924 resultados para Feed: Gain ratio
Resumo:
Use of prebiotics, nondigestible dietary ingredients that beneficially affect the host by selectively stimulating the growth of and/or activating the metabolism of healthpromoting bacteria in the intestinal tract, is a novel concept in aquaculture. An 8-week feeding experiment was conducted to investigate the effects of dietary prebiotic inulin on the growth performance, intestinal bacterial density, body composition and values of blood serum enzymes in the juvenile great sturgeon (Huso huso). Three replicate groups of fish (initially averaging weight 16.14±0.38g) were fed diets containing prebiotic inulin at levels ranging from 1% to 3%. The basal diet was contained 3% cellulose. The results of linear regression showed there was a negative relationship between some performance indices including weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), net protein utilization (NPU), energy retention (ERE), feed efficincy (FE), protein retention (PR) and supplementation level of inulin. At the end of trial, the 1% inulin treatment insignificantly showed an enhaced survival between the treatment groups. Intestinal lactic acid bacteria (LAB) increased in group treated with 1% inulin compare to other groups. No significant difference were observed in body composition and level of serum enzymes (P>0.05). Moreover there was significant correlation between ALT and LDH values (P<0.01). Result obtained in this study shows that the prebiotic inulin didn’t influence the increase of the growth performance of juvenile great sturgeon and it is not appropriate for supplementation in the diet of beluga.
Resumo:
A growth trial was conducted to estimate the optimum requirement of dietary available phosphorus (P) for black seabream (Sparus macrocephalus) in indoor net cages (1.5x1.0x1.0 m). Triplicate groups of black seabream (11.45 +/- 0.02 g) were fed diets containing graded levels (0.18, 0.36, 0.54, 0.72, 0.89 and 1.07%) of available P to satiation for 8 weeks. The basal diet (diet 1), containing 0.18% available P, was supplemented with graded levels of monosodium phosphate (NaH2PO4 2H(2)O) to formulate five experimental diets. The fish were fed twice daily (08:00 h and 16:00 h) and reared in seawater (salinity, 26-29 g l(-1)) at a temperature of 28 +/- 1 degrees C. Dissolved oxygen during the experiment was above 5 mg l(-1). The specific growth rate (SGR), weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) were all significantly improved by dietary phosphorus up to 0.54% (P<0.05) and then leveled off beyond this level. Hepatosomatic index (HSI) was inversely correlated with dietary phosphorus levels (P< 0.05). Efficiency of P utilization stabled in fish fed diets containing 0.18%-0.54% available P and then decreased dramatically with further supplementation of dietary phosphorus. Body composition analysis showed that the whole-body lipid, ash, calcium and phosphorus contents were all significantly affected by dietary available P concentration (P<0.05), however, no significance were found in whole-body calcium/phosphorus (Ca/P) ratios among all the treatments (P>0.05). Dietary phosphorus levels also affected the mineralization of vertebrae, skin and scale (P<0.05). Ca/P ratios in vertebrae and scale were not influenced by dietary P supplementation, while skin Ca/P ratio increased statistically with dietary available P levels (quadratic effect, P<0.001). The blood chemistry analysis showed that dietary available P had distinct effects on enzyme activities of alkaline phosphatase (ALP) and plasma lysozyme (LSZ), as well as contents of triacyglycerol (TG) and total cholesterol (T-CHO) (P<0.05). Broken-line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 0.55%. Quadratic analysis based on P contents in whole fish, vertebrae or scale indicated that the requirements were 0.81, 0.87 and 0.88%, respectively. Signs of phosphorus deficiency were characterized by poor growth, slightly reduced mineralization and an increase in body lipid content. (C) 2008 Published by Elsevier B.V.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio (initial body weight: 5.25 +/- 0.02 g) were fed for 8 weeks at 20-25 degreesC on five isonitrogenous (crude protein: 400 g kg(-1)) and isoenergetic diets (gross energy: 17 kJ g(-1)). Meat and bone meal (MBM) or poultry by-product meal (PBM) were used to replace fish meal at different levels of protein. The control diet contained fish meal as the sole protein source. In the other four diets, 150 or 500 g kg(-1) of fish meal protein was substituted by MBM (MBM15, MBM50) or PBM (PBM15, PBM50). The results showed that feeding rate for the MBM50 group was significantly higher than for other groups except the PBM50 group (P < 0.05). Growth rate in the MBM15 group was significantly higher than that in the control (P < 0.05), while there was no significant difference in growth between the control and other groups (P > 0.05). Feed efficiency and protein efficiency ratio in MBM50 was significantly lower while that in MBM15 was significantly higher (P < 0.05). Replacement of fish meal by MBM at 500 g kg(-1) protein significantly decreased apparent dry matter digestibility (ADC(D)) and gross energy (ADC(E)) while apparent protein digestibility (ADC(P)) was significantly decreased by the replacement of MBM or PBM (P < 0.05). The results suggest that MBM and PBM could replace up to 500 g kg(-1) of fish meal protein in diets for gibel carp without negative effects on growth while 150 g kg(-1) replacement by MBM protein improved feed utilization.
Resumo:
The electronic structure and optical gain of wurtzite ZnO nanowires are investigated in the framework of effective-mass envelope-function theory. We found that as the elliptical aspect ratio e increases to be larger than a critical value, the hole ground states may change from optically dark to optically bright. The optical gain of ZnO nanowires increases as the hole density increases. For elliptical wire with large e, the y-polarized mode gain can be several thousand cm(-1), while the x-poiarized mode gain may be 26 times smaller than the former, so they can be used as ultraviolet linearly polarized lasers. (C) 2008 American Institute of Physics.
Resumo:
We report an experimental and theoretical study of maximum modal gain of p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers. The maximum modal gain of the QD laser with five stacks of QDs is as high as 17.5 cm(-1) which is the same as that of the undoped laser with identical structures. The expression of the maximum modal gain is derived and it is indicated that p-doping has no effect to the maximum modal gain. We theoretically calculated the maximum modal gain of the QD lasers and the result is in a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial to achieving a greater maximum modal gain that leads to lower threshold current density and higher differential modal gain, which is good for the application of p-doped 1.3 mu m InAs/GaAs QD lasers in optical communications systems.
Resumo:
Stochastic resonance (SR) induced by the signal modulation is investigated, by introducing the signal-modulated gain into a single-mode laser system. Using the linear approximation method, we detailedly calculate the signal-to-noise ratio (SNR) of a gain-noise model of the single-mode laser, taking the cross-correlation between the quantum noise and pump noise into account. We find that, SR appears in the dependence of the SNR on the intensities of the quantum and the pump noises when the correlation coefficient between both the noises is negative; moreover, when the cross-correlation between the two noises is strongly negative, SR exhibits a resonance and a suppression versus the gain coefficient, meanwhile, the single-peaked SR and multi-peaked SR occur in the behaviors of the SNR as functions of the loss coefficient and the deterministic steady-state intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An InGaA1As multiquantum well (MQW) has been successfully overgrown on the absorptive InGaAsP corrugation for fabricating the 1.3 mu m gain coupled distributed feedback (DFB) lasers. The absorptive InGaAsP corrugation was efficaciously preserved during the overgrowth of the InGaA1As MQW active region. The absorptive InGaAsP corrugation has a relatively high intensity around the PL peak wavelength in comparison with that of the InGaA1As MQW. The fabricated DFB laser exhibited a side mode suppression ratio of 40 dB together with a high single-mode yield of 90%.
Resumo:
The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The turn-on delay time jitter of four different unbiased gain-switched laser types is determined by measuring the temporal probability distribution of the leading edge of the emitted optical pulse. One single-mode 1.5-mu-m distributed feed-back laser and three multimode Fabry-Perot lasers emitting at 750 nm and 1.3-mu-m are investigated. The jitter is found to decrease for all lasers with increasing injection current. For multimode lasers it decreases from 8 ps excited slightly above threshold down to below 2 ps at three times the threshold current. The jitter of the distributed feedback (DFB) laser is a factor of 3-5 larger than the jitter of the three multimode lasers. A new model to predict the turn-on delay time jitter is presented and explains the experiments quantitatively.
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, gain-bandwidth (GB) trade-off associated with analog device/circuit design due to conflicting requirements for enhancing gain and cutoff frequency is examined. It is demonstrated that the use of a nonclassical source/drain (S/D) profile (also known as underlap channel) can alleviate the GB trade-off associated with analog design. Operational transconductance amplifier (OTA) with 60 nm underlap S/D MOSFETs achieve 15 dB higher open loop voltage gain along with three times higher cutoff frequency as compared to OTA with classical nonunderlap S/D regions. Underlap design provides a methodology for scaling analog devices into the sub-100 nm regime and is advantageous for high temperature applications with OTA, preserving functionality up to 540 K. Advantages of underlap architecture over graded channel (GC) or laterally asymmetric channel (LAC) design in terms of GB behavior are demonstrated. Impact of transistor structural parameters on the performance of OTA is also analyzed. Results show that underlap OTAs designed with spacer-to-straggle ratio of 3.2 and operated below a bias current of 80 microamps demonstrate optimum performance. The present work provides new opportunities for realizing future ultra wide band OTA design with underlap DG MOSFETs in silicon-on-insulator (SOI) technology. Index Terms—Analog/RF, double gate, gain-bandwidth product, .
Resumo:
Recombining plasmas produced by picosecond laser pulses are characterized by measuring ratio of intensities of resonance lines of H- and He-like ions in the plasmas. It is found that the rapidly recombining plasmas produced by picosecond laser pulses are suitable for high-gain operation.