533 resultados para FIA amperometric
Resumo:
This paper describes the development and application of an RP HPLC method using a C(18) monolithic stationary phase for the separation and quantification of extra- and intracellular amino acids in a batch cultivation of the marine alga Tetraselmis gracilis. Fluorimetric detection was made after separation of the o-phthaldialdehyde 2-mercaptoethanol (OPA-2MCE) derivatives using a binary gradient elution. Separation of 19 amino acids was achieved with resolution >1.5 in about 39 min at a flow rate of 1.5 mL/min. RSD of analyses in seawater medium ranged from 0.36% for Orn (0.50 mu mol/L) to 12% for Ile (0.10 mu mol/L). The main constituents of the intracellular dissolved free amino acids (DFAAs) in the exponential growth phase were arginine (Arg), asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Ser), glycine (Gly), glutamine (Gln), and leucine (Leu). The major amino acids excreted to the media were valine (Val), Ala, Ser, and Gly. The monolithic phase facilitates the analysis by shortening the separation time and saving solvents and instrumentation costs (indeed conventional HPLC instrumentation can be used, running at lower pressures than those ones used with packed particle columns).
Resumo:
Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
We report an effective approach for the construction of a biomimetic sensor of multicopper oxidases by immobilizing a cyclic-tetrameric copper(II) species, containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), in the Nafion (R) membrane on a vitreous carbon electrode surface. This complex provides a tetranuclear arrangement of copper ions that allows an effective reduction of oxygen to water, in a catalytic cycle involving four electrons. The electrochemical reduction of oxygen was studied at pH 9.0 buffer solution by using cyclic voltammetry, chronoamperometry, rotating disk electrode voltammetry and scanning electrochemical microscopy techniques. The mediator shows good electrocatalytic ability for the reduction of O(2) at pH 9.0, with reduction of overpotential (350 mV) and increased current response in comparison with results obtained with a bare glassy carbon electrode. The heterogeneous rate constant (k(ME)`) for the reduction of O(2) at the modified electrode was determined by using a Koutecky-Levich plot. In addition, the charge transport rate through the coating and the apparent diffusion coefficient of O(2) into the modifier film were also evaluated. The overall process was found to be governed by the charge transport through the coating, occurring at the interface or at a finite layer at the electrode/coating interface. The proposed study opens up the way for the development of bioelectronic devices based on molecular recognition and self-organization. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
An electrochemical biosensor using poly-phenol oxidasa (PPO) was constructed for the determination of phenolic compounds. The PPO employed with enzyme, it was obtained from Archontophoenix Cunninghamiana. The biosensor showed range of linearity in the range of 1 x 10(-3) to 1 x 10(-4) mol/L and a detection limit of 1 x 10(-4) mol/L. The optimal pH was 6,7 in medium phosphate buffer. The lifetime of the biosensors was 1 months, stored in phosphate buffer solution 0.1 mol/L to ambient temperature.
Resumo:
A conductive and electrochemically active composite material has been prepared by the combination of bentonite and nickel hydroxide precursor sol. This material exhibits the characteristic intercalation properties of the clay component and the electrochemical and optical properties of nickel hydroxide. The clay particles seem to induce the aggregation of nickel hydroxide, leading to the formation of a layer of alpha-Ni(OH)(2) exhibiting needle like morphology. The composite forms stable films and has been conveniently used for the preparation of modified electrodes exhibiting intercalation and electrochemical properties, thus providing an interesting material for the development of amperometric sensors. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The concept of sequential injection chromatography (SIC) was exploited to automate the fluorimetric determination of amino acids after pre-column derivatization with ophthaldialdehyde (OPA) in presence of 2-mercaptoethanol (2MCE) using a reverse phase monolithic C(18) stationary phase. The method is low-priced and based on five steps of isocratic elutions. The first step employs the mixture methanol: tetrahydrofuran: 10 mmol L(-1) phosphate buffer (pH 7.2) at the volumetric ratio of 8:1:91; the other steps use methanol: 10 mmol L-1 phosphate buffer (pH 7.2) at volumetric ratios of 20:80, 35:65, SO:SO and 65:35. At a flow rate of 10 mu L s(-1) a 25 mm long-column was able to separate aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), glycine (Gly), threonine (Thr), citruline (Ctr), arginine (Arg), alanine (Ala), tyrosine (Tyr), phenylalanine (Phe), ornithine (Orn) and lysine (Lys) with resolution >1.2 as well as methionine (Met) and valine (Val) with resolution of 0.6. Under these conditions isoleucine (Ile) and leucine (Leu) co-eluted. The entire cycle of amino acids derivatization, chromatographic separation and column conditioning at the end of separation lasted 25 min. At a flow rate of 40 mu L s(-1) such time was reduced to 10 min at the cost of resolution worsening for the pairs Ctr/Arg and Orn/Lys. The detection limits varied from 0.092 mu mol L(-1) for Tyr to 0.51 mu mol L(-1) for Orn. The method was successfully applied to the determination of intracellular free amino acids in the green alga Tetraselmis gracilis during a period of seven days of cultivation. Samples spiked with known amounts of amino acids resulted in recoveries between 94 and 112%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present paper deals with the immobilization of redox mediators and proteins onto protected porous silicon surfaces to obtain their direct electrochemical reactions and to retain their bioactivities. This paper shows that MP-11 and viologens are able to establish chemical bonds with 3-aminopropyltriethoxylsilane-modified porous silicon surface. The functionalization of the surfaces have been fully characterized by energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) to examine the immobilization of these mediators onto the solid surface. Amperometric and open circuit potential measurements have shown the direct electron transfer between glucose oxidase and the electrode in the presence of the viologen mediator covalently linked to the 3-aminopropyltriethoxylsilane (APTES)-modified porous silicon surfaces.
Resumo:
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new electrocatalytic active porphyrin nanocomposite material was obtained by electropolymerization of meso-tetra(4-sulphonatephenyl) porphyrinate manganese(III) complex (MnTPPS) in alkaline solutions containing sub-micromolar concentrations of silver chloride. The modified glassy carbon electrodes efficiently oxidize hydrazine at 10 mV versus Ag/AgCl, dramatically decreasing the overpotential of conventional carbon electrodes. The analytical characteristics of this amperometric sensor coupled with batch injection analysis (BIA) technique were explored. Wide linear dynamic range (2.5 x 10(-7) to 2.5 x 10(-4) mol L-1), good repeatability (R.S.D. = 0.84%, n = 30) and low detection (3.1 x 10(-8) mol L-1) and quantification (1.0 x 10(-7) mol L-1) limits, as well as very fast sampling frequency (60 determinations per hour) were achieved. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.
Resumo:
A simple, rapid, and low-cost coulometric method for direct detection of glyphosate and aminomethylphosphonic acid (AMPA) in water samples using anion-exchange chromatography and coulometric detection with copper electrode is presented. Under optimized conditions, the limits of detection (LODs) (S/N = 3) were 0.038 mu g ml(-1) for glyphosate and 0.24 mu g ml(-1) for AMPA, without any preconcentration method. The calibration curves were linear and presented an excellent correlation coefficient. The method was successfully applied to the determination of glyphosate and AMPA in water samples without any kind of extraction, clean-up, or preconcentration step. No interferent was found in the water, like this, the recovery was, practically, 100%. (c) 2008 Elsevier B.V. All rights reserved.