989 resultados para Energy landscape
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
A zero-energy home (ZEH) is a residential dwelling that generates as much energy annually from onsite renewable sources, as it consumes in its operation. A positive energy home (PEH) generates more energy than it consumes. The key design and construction elements, and costs and benefits of such buildings, are the subject of increasing research globally. Approaching this topic from the perspective of the role of such homes in the planning and development ‘supply chain’, this paper presents the measured outcomes of a PEH and discusses urban design implications. Using twelve months of detailed performance data of an occupied sub-tropical home, the paper analyses the design approach and performance outcomes that enable it to be classified as ‘positive energy’. Second, it analyses both the urban design strategies that assisted the house in achieving its positive energy status, and the impacts of such housing on urban design and infrastructure. Third, the triple bottom line implications are discussed from the viewpoint of both the individual household and the broader community. The paper concludes with recommendations for research areas required to further underpin and quantify the role of ZEHs and PEHs in enabling and supporting the economic, social and ecological sustainability of urban developments.
Resumo:
1.1 Background What is renewable energy education and training? A cursory exploration of the International Solar Energy Society website (www.ises.org) reveals numerous references to education and training, referring collectively to concepts of the transfer and exchange of information and good practices, awareness raising and skills development. The purposes of such education and training relate to changing policy, stimulating industry, improving quality control and promoting the wider use of renewable energy sources. The primary objective appears to be to accelerate a transition to a better world for everyone (ISEE), as the greater use of renewable energy is seen as key to climate recovery; world poverty alleviation; advances in energy security, access and equality; improved human and environmental health; and a stabilized society. The Solar Cities project – Habitats of Tomorrow – aims at promoting the greater use of renewable energy within the context of long term planning for sustainable urban development. The focus is on cities or communities as complete systems; each one a unique laboratory allowing for the study of urban sustainability within the context of a low carbon lifestyle. The purpose of this paper is to report on an evaluation of a Solar Community in Australia, focusing specifically on the implications (i) for our understandings and practices in renewable energy education and training and (ii) for sustainability outcomes. 1.2 Methodology The physical context is a residential Ecovillage (a Solar Community) in sub-tropical Queensland, Australia (latitude 28o south). An extensive Architectural and Landscape Code (A&LC) ‘premised on the interconnectedness of all things’ and embracing ‘both local and global concerns’ governs the design and construction of housing in the estate: all houses are constructed off-ground (i.e. on stumps or stilts) and incorporate a hybrid approach to the building envelope (mixed use of thermal mass and light-weight materials). Passive solar design, gas boosted solar water heaters and a minimum 1kWp photovoltaic system (grid connected) are all mandatory, whilst high energy use appliances such as air conditioners and clothes driers are not permitted. Eight families participated in an extended case study that encompassed both quantitative and qualitative approaches to better understand sustainable housing (perceived as a single complex technology) through its phases of design, construction and occupation. 1.3 Results The results revealed that the level of sustainability (i.e. the performance outcomes in terms of a low-carbon lifestyle) was impacted on by numerous ‘players’ in the supply chain, such as architects, engineers and subcontractors, the housing market, the developer, product manufacturers / suppliers / installers and regulators. Three key factors were complicit in the level of success: (i) systems thinking; (ii) informed decision making; and (iii) environmental ethics and business practices. 1.4 Discussion The experiences of these families bring into question our understandings and practices with regard to education and training. Whilst increasing and transferring knowledge and skills is essential, the results appear to indicate that there is a strong need for expanding our education efforts to incorporate foundational skills in complex systems and decision making processes, combined with an understanding of how our individual and collective values and beliefs impact on these systems and processes.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
Air conditioning systems have become an integral part of many modern buildings. Proper design and operation of air conditioning systems have significant impact not only on the energy use and greenhouse gas emissions from the buildings, but also on the thermal comfort and productivity of the occupants. In this paper, the purpose and need of installing air conditioning systems is first introduced. The methods used for the classification of air conditioning systems are then presented. This is followed by a discussion on the pros and cons of each type of the air conditioning systems, including both common and new air conditioning technologies. The procedures used to design air conditioning systems are also outlined, and the implications of air conditioning systems, including design, selection, operation and maintenance, on building energy efficiency is also discussed.
Resumo:
This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
In 1944 Australian author Eleanor Dark wrote that Australia is a hard country for an outsider to see, citing, in evidence, the writing of the “strange, foreign-looking little man with the beard” -- the self-described by D. H. Lawrence. According to Dark, Lawrence was bewildered by Australia because what his eyes saw was not what they were accustomed to seeing. Kangaroo, she wrote, suggests one long, tormented effort to see. Lawrence appears, for Dark, to be half-blind, struggling, and irritated almost beyond belief with his visit to New South Wales. Eleanor Dark wrote this critique in 1944, long after Lawrence’s 1922 visit, but for her, as for other Australian writers, Kangaroo continued to register as an important book, even if the content rankled. Katharine Susannah Prichard and Christina Stead, both advocates in general of Lawrence, likewise rejected the tenor of Kangaroo, although Lawrence would not have been worried about the response. In 1929 he referred to his irritation with Australia in letters to P.R. “Inky” Stephensen, the Australian nationalist and publisher, and he does not seem to have changed his opinions since writing Kangaroo. Yet the novel continued to be significant for Australian writers, even if as a provocation. My discussion traces the responses of the women authors to Kangaroo, and refers to Lawrence’s letters to Stephensen, as a way of emphasizing this significance, seen especially in relation to ideas about ‘seeing’ and the Australian landscape.
Resumo:
- Speeding and crash involvement in Australia - Speed management in Australia - Jurisdictional differences - National Road Safety Strategy (2011-2020) - Auditor-General reviews of speed camera programs - The role of public opinion/feedback - Implications for speed management
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.
Resumo:
Poem
Resumo:
The structure of the travel, meant as cultural activity, is proposed as a key to read and design the urban or rural landscape.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.