970 resultados para Endophytic fungus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

From cultures of thermophilic soil fungus Humicola grisea var thermoidea, a delta-lactam derivative (3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridin-2( 1H)-one) that displayed anti-allergic activity was isolated, which was predicted by in silico computational chemistry approaches. The in vitro anti-allergic activity was investigated by beta-hexosaminidase release assay in rat basophilic leukaemia RBL-2H3 cells. The delta-lactam derivative exhibited similar anti-allergic activity (IC50 = 18.7 +/- 6.7 mu M) in comparison with ketotifen fumarate (IC50 = 15.0 +/- 1.3 mu M) and stronger anti-allergic activity than azelastine (IC50 = 32.0 mu M). Also, the MTT cytotoxicity assay with RBL-2H3 cells showed that delta-lactam does not display cytotoxicity at concentrations lower than 50 mu M. This study suggests that the delta-lactam derivative has the potential to be used as a lead compound in the development of anti-allergic drugs for clinical use in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promotion of sugarcane growth by the endophytic Pantoea agglomerans strain 33.1 was studied under gnotobiotic and greenhouse conditions. The green fluorescent protein (GFP)-tagged strain P. agglomerans 33.1: pNKGFP was monitored in vitro in sugarcane plants by microscopy, reisolation, and quantitative PCR (qPCR). Using qPCR and reisolation 4 and 15 days after inoculation, we observed that GFP-tagged strains reached similar density levels both in the rhizosphere and inside the roots and aerial plant tissues. Microscopic analysis was performed at 5, 10, and 18 days after inoculation. Under greenhouse conditions, P. agglomerans 33.1-inoculated sugarcane plants presented more dry mass 30 days after inoculation. Cross-colonization was confirmed by reisolation of the GFP-tagged strain. These data demonstrate that 33.1:pNKGFP is a superior colonizer of sugarcane due to its ability to colonize a number of different plant parts. The growth promotion observed in colonized plants may be related to the ability of P. agglomerans 33.1 to synthesize indoleacetic acid and solubilize phosphate. Additionally, this strain may trigger chitinase and cellulase production by plant roots, suggesting the induction of a plant defense system. However, levels of indigenous bacterial colonization did not vary between inoculated and noninoculated sugarcane plants under greenhouse conditions, suggesting that the presence of P. agglomerans 33.1 has no effect on these communities. In this study, different techniques were used to monitor 33.1:pNKGFP during sugarcane cross-colonization, and our results suggested that this plant growth promoter could be used with other crops. The interaction between sugarcane and P. agglomerans 33.1 has important benefits that promote the plant's growth and fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims Endophytic and rhizospheric environments differ in many respects, leading to the presence of different bacterial communities at each site. However, microorganisms such as enterobacteria can be found both within plants and in the surrounding soil. Bacteria must present differences in the traits that affect such environments in order to successfully colonise them. The present study compared the plant growth-promoting potential of diazotrophic enterobacteria isolated from the rhizosphere and from within surface-disinfected plants. Methods A total of 46 diazotrophic enterobacterial strains (21 rhizospheric and 25 putatively endophytic) belonging to the Klebsiella and Enterobacter genera, which are prevalent in sugar cane plantations, were isolated from the rhizosphere and from surface-disinfected plants. Their ability to synthesise amino acids using combined nitrogen obtained from nitrogen fixation, and their ability to synthesise indole-3-acetic acid (IAA) were determined by high performance liquid chromatography. Endogenous ethylene production by the bacteria was measured using gas chromatography, and biocontrol of phytopathogenic fungi was determined qualitatively using a dual culture technique. Results The putative endophytes released significantly higher amounts of amino acids than the rhizospheric bacteria, whilst the latter produced higher quantities of ethylene and were more actively antagonistic to fungi. Both types of bacteria released similar amounts of IAA. Conclusion Endophytic and rhizospheric bacteria differ in their capacity to release plant growth-promoting substances, which may be a reflection of their adaptations and an indication of their potential impact on their natural environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutases (SODS; EC 1.15.1.1) are part of the antioxidant system of aerobic organisms and are used as a defense against oxidative injury caused by reactive oxygen species (ROS). The cloning and sequencing of the 788-bp genomic DNA from Trichoderma reesei strain QM9414 (anamorph of Hypocrea jecorina) revealed an open reading frame encoding a protein of 212 amino acid residues, with 65-90% similarity to manganese superoxide dismutase from other filamentous fungi. The TrMnSOD was purified and shown to be stable from 20 to 90 degrees C for 1 h at pH from 8 to 11.5, while maintaining its biological activity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Leaf-cutting ants collect plant fresh material for the cultivation of their mutualistic fungus. Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) cause great economic losses through their foraging activity, mainly in agriculture. The main control method is the application of granulated toxic baits incorporated with an active ingredient (AI). The present goal is to evaluate the effect of caffeine on in vitro growth of the mutualistic fungus and on the survival of the leaf-cutting ants, aiming to verify the potential toxicity of this secondary metabolite over these organisms. RESULTS: Three distinct patterns of fungal growth correlated with caffeine concentration were observed: (1) no effect (0.01% caffeine); (2) intermediate growth reduction (0.05% caffeine); (3) drastic growth reduction (0.10 and 0.50% caffeine). The highest caffeine concentration causes fungus death in the first week. As for insect survival, caffeine does not seem to exert any effect. The treatments with diet containing caffeine showed similar values of M50, irrespective of caffeine concentration. CONCLUSION: As caffeine was shown to reduce growth of the mutualistic fungus of Atta sexdens rubropilosa, but with no conclusive effect on insect survival, a hypothetical explanation for the selection of different Coffea species by this leaf-cutting ant species might be associated with caffeine toxicity to the fungus. Copyright (C) 2011 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in calcium-or oxalic acid-amended cultures. The secretion of hydrolytic and oxidative enzymes was inhibited only in the cultures having the highest concentration of calcium (1400 mg kg(-1) wood). Calcium decreased the availability of free oxalic acid, inhibited fungal growth, and reduced lignin mineralization and transformations. Oxalic acid amendment in the cultures was found not to affect the lignin mineralization and transformations; however, it did inhibit the depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood. C. subvermispora presented catabolic activity for oxalic acid in the cultures amended with 1660 mg acid kg(-1) wood, whereas oxalic acid was synthesized when it was amended at low amounts or initially absent in the cultures. These data suggest one ideal ratio of oxalic acid in C. subvermispora cultures and indicate that its exogenous addition does not necessarily accompany the further degradation of lignin. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An high performance liquid chromatography (HPLC) method for the enantioselective determination of donepezil (DPZ), 5-O-desmethyl donepezil (5-ODD), and 6-O-desmethyl donepezil (6-ODD) in Czapek culture medium to be applied to biotransformation studies with fungi is described for the first time. The HPLC analysis was carried out using a Chiralpak AD-H column with hexane/ethanol/methanol (75:20:5, v/v/v) plus 0.3 % triethylamine as mobile phase and UV detection at 270 nm. Sample preparation was carried out by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 100-10,000 ng mL(-1) for each enantiomer of DPZ (r a parts per thousand yenaEuro parts per thousand 0.9985) and of 100-5,000 ng mL(-1) for each enantiomer of 5-ODD (r a parts per thousand yenaEuro parts per thousand 0.9977) and 6-ODD (r a parts per thousand yenaEuro parts per thousand 0.9951). Within-day and between-day precision and accuracy evaluated by relative standard deviations and relative errors, respectively, were lower than 15 % for all analytes. The validated method was used to assess DPZ biotransformation by the fungi Beauveria bassiana American Type Culture Collection (ATCC) 7159 and Cunninghamella elegans ATCC 10028B. Using the fungus B. bassiana ATCC 7159, a predominant formation of (R)-5-ODD was observed while for the fungus C. elegans ATCC 10028B, DPZ was biotransformed to (R)-6-ODD with an enantiomeric excess of 100 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesopolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae) are presented as a new subject for extensive investigation to find novel natural products, which make them a potentially rich and innovative source for new drug candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulolytic and hemicellulytic enzymes are needed, in order to optimize the degradation of bagasse and production of ethanol 2G. Results The ability to produce hemicellulases and related enzymes, suitable for lignocellulosic biomass deconstruction, was explored using 110 endophytic fungi and 9 fungi isolated from spoiled books in Brazil. Two initial selections were performed, one employing the esculin gel diffusion assay, and the other by culturing on agar plate media with beechwood xylan and liquor from the hydrothermal pretreatment of sugar cane bagasse. A total of 56 isolates were then grown at 29°C on steam-exploded delignified sugar cane bagasse (DEB) plus soybean bran (SB) (3:1), with measurement of the xylanase, pectinase, β-glucosidase, CMCase, and FPase activities. Twelve strains were selected, and their enzyme extracts were assessed using different substrates. Finally, the best six strains were grown under xylan and pectin, and several glycohydrolases activities were also assessed. These strains were identified morphologically and by sequencing the internal transcribed spacer (ITS) regions and the partial β-tubulin gene (BT2). The best six strains were identified as Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49. These strains produced glycohydrolases with different profiles, and production was highly influenced by the carbon sources in the media. Conclusions The selected endophytic fungi Aspergillus niger DR02, Trichoderma atroviride DR17 and DR19, Alternaria sp. DR45, Annulohypoxylon stigyum DR47 and Talaromyces wortmannii DR49 are excellent producers of hydrolytic enzymes to be used as part of blends to decompose sugarcane biomass at industrial level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium.