951 resultados para Embodied technological progress
Resumo:
Purpose Energy is a resource of strategic importance for high density cities. International trade reshapes the urban economy and industrial structure of a city, which will indirectly affect energy use. As an international trade hub, Hong Kong relies on the import and export of services. Energy performance in the international trading of these services needs to be properly understood and assessed for Hong Kong’s urban renewal efforts. Design/methodology/approach This study evaluates Hong Kong’s embodied energy in service trades based on an input-output analysis. The three criteria used for assessment include trading areas, industry sector, and trade balance. Findings Analyzed by region, results show that Mainland China and the USA are the two largest sources of embodied energy in imports of services, while Mainland China and Japan are the two largest destinations of exports. In terms of net embodied energy transfer, Hong Kong mainly receives net energy import from Mainland China and the USA and supplies net energy export to Japan, the UK and Taiwan. Among industry sectors, Manufacturing services, Transport and Travel contribute most significantly to the embodied energy in Hong Kong’s imported services, while Transport and Travel contribute most to the energy embodied in exported services. Originality/value This study identifies the characteristics of energy consumption of service trading and establishes a feasible approach to analyze energy performance of service trade in energy-deficient Hong Kong for the first time. It provides necessary understanding and foundation for developing energy strategies in a service-based, high density urban economy.
Resumo:
Australia has a very proud record of achievement in biological control of weeds and the underpinning science. From the earliest campaigns against prickly pear and lantana, weed biocontrol developed with major contributions from CSIRO and state governments to produce outstanding successes against weeds such as salvinia, rubber vine, Noogoora burr, bridal creeper and prickly pear. Maximum research activity occurred in the 1980s when some 30 scientists were working world wide on Australia’s weed problems. Activity declined gradually until the last few years when government divestment in agricultural research greatly diminished capacity. There are now approximately eight full-time scientist equivalents supporting Australia’s weed biocontrol effort. Australia may now need to adopt a team approach to tackle future major weed biological control projects.
Resumo:
Letter regarding the election of Dr. Leo to the Progress Lodge. Written in English script on blue lined white paper.
Resumo:
Technological forecasting, defined as quantified probabilistic prediction of timings and degree of change in the technological parameters, capabilities desirability or needs at different times in the future, is applied to birth control technology (BCT) as a means of revealing the paths of most promising research through identifying the necessary points for breakthroughs. The present status of BCT in the areas of pills and the IUD, male contraceptives, immumological approaches, post-coital pills, abortion, sterilization, luteolytic agents, laser technologies, and control of the sex of the child, are each summarized and evaluated in turn. Fine mapping is done to identify the most potentially promising areas of BCT. These include efforts to make oral contraception easier, improvement of the design of the IUD, clinical evaluation of the male contraceptive danazol, the effecting of biochemical changes in the seminal fluid, and researching of immunological approaches and the effects of other new drugs such as prostaglandins. The areas that require immediate and large research inputs are oral contraception and the IUD. On the basis of population and technological forecasts, it is deduced that research efforts could most effectively aid countries like India through the immediate production of an oral contraceptive pill or IUD with long-lasting effects. Development of a pill for males or an immunization against pre gnancy would also have a significant impact. However, the major impediment to birth control programs to date is attitudes, which must be changed through education.
Resumo:
The questions of whether science pursues truth as correspondence to reality and whether science in fact progresses towards attaining a truthful understanding of physical reality are fundamental and contested in the philosophy of science. On one side of the debate stands Popper, who argues that science is objective, necessarily assumes a correspondence theory of truth, and inevitably progresses toward truth as physical theories develop, gaining a more truthful understanding of reality through progressively more sophisticated empirical analysis. Conversely Kuhn, influenced by postmodern philosophy, argues that ultimate truth cannot be attained since no objective metaphysical reality exists and it cannot be known, and consequently the notion of scientific objectivity and "progress" is a myth, marred by philosophical and ideological value judgments. Ultimately, Kuhn reduces so-called scientific progress through the adoption of successive paradigms to leaps of "faith". This paper seeks a reconciliation of the two extremes, arguing that Popper is correct in the sense that science assumes a correspondence theory of truth and may progress toward truth as physical theories develop, while simultaneously acknowledging with Kuhn that science is not purely objective and free of value judgments. The notion of faith is also critical, for it was the acknowledgement of God's existence as the creator and instituter of observable natural laws which allowed the development of science and the scientific method in the first place. Therefore, accepting and synthesising the contentions that science is to some extent founded on faith, assumes and progresses toward truth, and is subject to value judgments is necessary for the progress of science.
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
Dispersing a data object into a set of data shares is an elemental stage in distributed communication and storage systems. In comparison to data replication, data dispersal with redundancy saves space and bandwidth. Moreover, dispersing a data object to distinct communication links or storage sites limits adversarial access to whole data and tolerates loss of a part of data shares. Existing data dispersal schemes have been proposed mostly based on various mathematical transformations on the data which induce high computation overhead. This paper presents a novel data dispersal scheme where each part of a data object is replicated, without encoding, into a subset of data shares according to combinatorial design theory. Particularly, data parts are mapped to points and data shares are mapped to lines of a projective plane. Data parts are then distributed to data shares using the point and line incidence relations in the plane so that certain subsets of data shares collectively possess all data parts. The presented scheme incorporates combinatorial design theory with inseparability transformation to achieve secure data dispersal at reduced computation, communication and storage costs. Rigorous formal analysis and experimental study demonstrate significant cost-benefits of the presented scheme in comparison to existing methods.
Resumo:
We propose a keyless and lightweight message transformation scheme based on the combinatorial design theory for the confidentiality of a message transmitted in multiple parts through a network with multiple independent paths, or for data stored in multiple parts by a set of independent storage services such as the cloud providers. Our combinatorial scheme disperses a message into v output parts so that (k-1) or less parts do not reveal any information about any message part, and the message can only be recovered by the party who possesses all v output parts. Combinatorial scheme generates an xor transformation structure to disperse the message into v output parts. Inversion is done by applying the same xor transformation structure on output parts. The structure is generated using generalized quadrangles from design theory which represents symmetric point and line incidence relations in a projective plane. We randomize our solution by adding a random salt value and dispersing it together with the message. We show that a passive adversary with capability of accessing (k-1) communication links or storage services has no advantage so that the scheme is indistinguishable under adaptive chosen ciphertext attack (IND-CCA2).
Resumo:
Detect and Avoid (DAA) technology is widely acknowledged as a critical enabler for unsegregated Remote Piloted Aircraft (RPA) operations, particularly Beyond Visual Line of Sight (BVLOS). Image-based DAA, in the visible spectrum, is a promising technological option for addressing the challenges DAA presents. Two impediments to progress for this approach are the scarcity of available video footage to train and test algorithms, in conjunction with testing regimes and specifications which facilitate repeatable, statistically valid, performance assessment. This paper includes three key contributions undertaken to address these impediments. In the first instance, we detail our progress towards the creation of a large hybrid collision and near-collision encounter database. Second, we explore the suitability of techniques employed by the biometric research community (Speaker Verification and Language Identification), for DAA performance optimisation and assessment. These techniques include Detection Error Trade-off (DET) curves, Equal Error Rates (EER), and the Detection Cost Function (DCF). Finally, the hybrid database and the speech-based techniques are combined and employed in the assessment of a contemporary, image based DAA system. This system includes stabilisation, morphological filtering and a Hidden Markov Model (HMM) temporal filter.
Resumo:
Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m(3) and 0.36 MJ/m(3) for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m(3) for cement content in the rage of 6-8%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
This paper probes how two small foundries in Belgaum, Karnataka State, India, have achieved technological innovations successfully based on their technological capability and customer needs, enabling them to sail through the competitive environment. This study brought out that technically qualified entrepreneurs of both the foundries have carried out technological innovations, mainly due to their self-motivation and self-efforts. Changing product designs, as desired or directed by the customers, cost reduction, quality improvement and import substitution through reverse engineering are the characteristics of these technological innovations. These incremental innovations have enabled the entrepreneurs of the two foundries to enhance competitiveness, grow in the domestic market and penetrate the international market and grow in size over time.
Resumo:
This paper probes how two small foundries in Belgaum, Karnataka State, India, have achieved technological innovations successfully based on their technological capability and customer needs, enabling them to sail through the competitive environment. This study brought out that technically qualified entrepreneurs of both the foundries have carried out technological innovations, mainly due to their self-motivation and self-efforts. Changing product designs, as desired or directed by the customers, cost reduction, quality improvement and import substitution through reverse engineering are the characteristics of these technological innovations. These incremental innovations have enabled the entrepreneurs of the two foundries to enhance competitiveness, grow in the domestic market and penetrate the international market and grow in size over time.