967 resultados para Elliptic Curve
Resumo:
This paper presents the measurement of the I-V curve of a 500-kW PV generator by means of an own-made capacitive load. It is shown that I-V curve analysis can also be applied to big PV generators and that when measuring the operation conditions with reference modules and taking some precautions (especially regarding the operation cell temperature), it is still a useful tool for characterizing them and therefore can be incorporated into maintenance procedures. As far as we know, this is the largest I-V curve measured so far.
Resumo:
We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented
Resumo:
Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4
Resumo:
An application of the Finite Element Method (FEM) to the solution of a geometric problem is shown. The problem is related to curve fitting i.e. pass a curve trough a set of given points even if they are irregularly spaced. Situations where cur ves with cusps can be encountered in the practice and therefore smooth interpolatting curves may be unsuitable. In this paper the possibilities of the FEM to deal with this type of problems are shown. A particular example of application to road planning is discussed. In this case the funcional to be minimized should express the unpleasent effects of the road traveller. Some comparative numerical examples are also given.
Resumo:
We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable.
Resumo:
Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality
Resumo:
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.
Resumo:
The extension of DROMO formulation to relative motion is evaluated. The orbit of the follower spacecraft can be constructed through differences on the elements defining the orbit of the leader spacecraft. Assuming that the differences are small, the problemis linearized. Typical linearized solutions to relativemotion determine the relative state of the follower spacecraft at a certain time step. Because of the form of DROMO formulation, the performance of a frozen-anomaly transformation is explored. In this case, the relative state is computed for a certain value of the anomaly, equal for leader and follower. Since the time for leader and follower do not coincide, the implicit time delay needs to be corrected to recover the physical sense of the solution. When determining the relative orbit, numerical testing shows significant error reductions compared to previous linearized solutions.
Resumo:
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
Resumo:
We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.
Resumo:
Fix an isogeny class
Resumo:
Mercury intrusion porosimetry (MIP) has been widely used to evaluate the quality of concrete through the pore size distribution parameters. Two of these parameters are the critical pore diameter (Dcrit) and the percentage of the most interconnected net of pores compared to the total volume of pores. Some researchers consider Dcrit as the diameter obtained from the inflexion point of the cumulative mercury intrusion curve while others consider Dcrit as the diameter obtained from the point of abrupt variation in the same curve. This study aims to analyze two groups of concretes of varying w/c ratios, one cast with pozzolanic cement and another with high initial strength cement, in order to determine which of these diameters feature a better correlation with the quality parameters of the concretes. The concrete quality parameters used for the evaluations were (1) the w/c ratios and (2) chloride diffusion coefficients measured at approximately 90 days. MIP cumulative distributions of the same concretes were also measured at about 90 days, and Dcrit values were determined (1) from the point of abrupt variation and alternatively, (2) from the inflexion point of each of these plots. It was found that Dcrit values measured from the point of abrupt variation were useful indicators of the quality of the concrete, but the Dcrit values based on the inflexion points were not. Hence, it is recommended that Dcrit and the percentage of the most interconnected volume of pores should be obtained considering the point of abrupt variation of the cumulative curve of pore size distribution.
Resumo:
At present, the market is severely mispricing Greece’s sovereign risk relative to the country’s fundamentals. As a result of the mispricing, financial intermediation in Greece has become dysfunctional and the privatisation of state-owned assets has stalled. This mispricing is partially due to an illiquid and fragmented government yield curve. A well-designed public liability management exercise can lead to a more efficient pricing of Greece’s government bonds and thereby help restore stable and affordable financing for the country’s private sector, which is imperative in order to overcome Greece’s deep recession. This paper proposes three measures to enhance the functioning of the Greek government debt market: i) Greece should issue a new five-year bond, ii) it should consolidate the 20 individual series of government bonds into four liquid securities and iii) it should offer investors a swap of these newly created bonds into dollar-denominated securities. Each of these measures would be beneficial to the Hellenic Republic, since the government would be able to reduce the face value and the net present value of its debt stock. Furthermore, this exercise would facilitate the resumption of market access, which is a necessary condition for continuous multilateral disbursements to Greece.