999 resultados para Electronic units


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of the [(eta(5)-C5Me5)MoCl4] complex with [LiBH4 - TH F] in toluene at - 70 degrees C, followed by pyrolysis at 110 degrees C, afforded dark brown [(eta(5)-C5Me5Mo)(3)MoB9H18], 2, in parallel with the known [(eta(5)-C5Me5Mo)(2)B5H9], 1. Compound 2 has been characterized in solution by H-1, B-11, and C-13 NMR spectroscopy and elemental analysis, and the structural types were unequivocally established by crystallographic studies. The title compound represents a novel class of vertex-fused clusters in which a Mo atom has been fused in a perpendicular fashion between two molybdaborane clusters. Electronic structure calculations employing density functional theory yield geometries in agreement with the structure determinations, and on grounds of density functional theory calculations, we have analyzed the bonding patterns in the structure,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical and non-classical isomers of both neutral and dianionic BC2P2H3 species, which are isolobal to Cp+ and Cp-, are studied at both B3LYP/6-311++G(d,p) and G3B3 levels of theory. The global minimum structure given by B3LYP/6-311+ + G(d,p) for BC2P2H3 is based on a vinylcyclopropenyl-type structure, whereas BC2P2H32- has a planar aromatic cyclopentadienyl-ion-like structure. However, at the G3B3 level, there are three low-energy isomers for BC2P2H3: 1)tricyclopentane, 2) nido and 3) vinylcyclopropenyl-type structures, all within 1.7 kcal mol(-1) of each other. On the contrary, for the dianionic species the cyclic planar structure is still the minimum. In comparison to the isolobal Cp+ and HnCnP5-n+ isomers, BC2P2H3 shows a competition between pi-delocalised vinylcyclopropenyl- and cluster-type structures (nido and tricyclopentane). Substitution of H on C by tBu, and H on B by Ph, in BC2P2H3 increases the energy difference between the low-lying isomers, giving the lowest energy structure as a tricyclopentane type. Similar substitution in BC2P2H32- merely favours different positional isomers of the cyclic planar geometry, as observed in 1) isoelectronic neutral heterodiphospholes EtBu2C2P2 (E=S, Se, Te), 2) monoanionic heterophospholyl rings EtBu2C2P2 (E=P-, As-, Sb-) and 3) polyphospholyl rings anions tBu(5-n)C(n)P(5-n) (n=0-5). The principal factors that affect the stability of three-, four-, and five-membered ring and acyclic geometrical and positional isomers of neutral and dianionic BC2P2H3 isomers appear to be: 1) relative bond strengths, 2) availability of electrons for the empty 2p boron orbital and 3) steric effects of the tBu groups in the HBC(2)P(2)tBu(2) systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At any given time in the field of early childhood, there are discourses at play, producing images of children, and these ways of seeing children might be competing, colliding and/or complementing each other. It is fairly widely accepted that in many countries there are versions of dominant discourses that shape and are shaped by current practices in the field of early childhood. These include (1) romantic notions of children running free and connecting with nature and (2) the ‘Bart Simpson’ version of the naughty, cute or savage child, untamed and in need of civilising. These are far from being the only two discursive constructions of children present in current policies and practices. If early childhood professionals are to be active in shaping and implementing policies that affect their work and workforce, it is important that they are aware of the forces at play. In this article, we point to another powerful discourse at play in the Australian context of early childhood education, the image of children as economic units: investments in the future. We show how a ‘moment of arising’ in contemporary policy contexts, dominated by neoliberal principles of reform and competition, has charged early childhood educators in Australia with the duties of a ‘broker’, ensuring that young children are worth the investment. In this article, we begin with (1) a key policy document in early childhood education in Australia and examine the discursive affordances which shape the document. Next, (2) we pinpoint the shifts in how the work of child care is perceived by interrogating this key policy document through a methodology of discursive analysis. We then turn attention (3) to the work of this policy document along with other discourses which directly affect images of children and the shaping role these have on the work of educators. We conclude with (4) a consideration of how the work of early childhood professionals has come to be shaped by this economic discourse, and how they are being required to both work within the policy imperatives and likely to resist this new demand of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inelastic x-ray scattering can be used to study the electronic structure of matter. The x rays scattered from the target both induce and carry information on the electronic excitations taking place in the system. These excitations are the manifestations of the electronic structure and the physics governing the many-body system. This work presents results of non-resonant inelastic x-ray scattering experiments on a range of materials including metallic, insulating and semiconducting compounds as well as an organic polymer. The experiments were carried out at the National Synchrotron Light Source, USA and at the European Synchrotron Radiation Facility, France. The momentum transfer dependence of the experimental valence- and core-electron excitation spectra is compared with the results of theoretical first principles computations that incorporate the electron-hole interaction. A recently developed method for analyzing the momentum transfer dependence of core-electron excitation spectra is studied in detail. This method is based on real space multiple scattering calculations and is used to extract the angular symmetry components of the local unoccupied density of final states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and characterisation of new examples of meso-hydroxynickel(II) porphyrins with 5,15-diphenyl and 10-phenyl-5,15-diphenyl/diaryl substitu- tion. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine cat- alysis. The NiPor OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor OC. The 15-phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1%, and its NMR line-broadening was able to be studied by variable-tempera- ture NMR spectroscopy. The EPR signals of NiPor OC are con- sistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density func- tional theory match the EPR and NMR spectroscopic obser- vations. Nickel(II) meso-hydroxy-10,20-diphenylporphyrin was oxidatively coupled to a dioxo-terminated porphodimethene dyad, the strongly red-shifted electronic spectrum of which was successfully modelled by using time-dependent DFT calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental beta-rhombohedral boron. The calculated band structure of ideal beta-rhombohedral boron (B-105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B-105 and materials which are closely related to beta-rhombohedral boron. The molecular structures B12H12-2, B28H21+1, BeB27H21, LiB27H21-1, CB27H21+2, B57H36+3, Be3B54H36, and Li2CB54H36, and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.