990 resultados para Double Electron-Electron Resonance (DEER)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on a nonperturbative R-matrix with PseudoStates (RMPS) calculation for the electron-impact ionization cross section of the ground state of Al2+. We include both the direct ionization of the 3s and 2p subshells and the indirect ionization from the 2p subshell. This calculation, thus, includes extra decay channels for the indirect-ionization process not included in previous RMPS calculations. This lowers the total-ionization cross section, resulting in closer agreement with the most recent experimental measurements. This calculation also shows better agreement with the position and height of the resonant-excitation double autoionization features seen in the experiment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Configuration-average distorted-wave calculations are carried out for the electron-impact single ionization of Xe 24 + . Contributions are included from direct ionization of the 3s, 3p, 3d and 4s subshells and from indirect ionization via 3s → nl , 3p → nl and 3d → nl excitations followed by autoionization. Branching ratios are found for single versus double ionization of the 3s and 3p subshells and for autoionization versus radiative decay of all 3 l → nl excitations. Additional distorted-wave and R -matrix calculations find resonant-capture double-autoionization contributions to be quite small. The total ionization cross section for Xe 24 + is found to be dominated by indirect excitation–autoionization contributions, especially near the single-ionization threshold. An approximate 15% reduction in the total ionization cross section is found due to the radiative decays included in the branching ratios.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The structures of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid have been determined by gas-phase electron diffraction using results from quantum chemical calculations to inform the choice of restraints applied to some of the structural parameters. The results from the study presented here demonstrate that resonance hybrids are not as helpful in rationalizing the structures of 2-, 3-, and 4-hydroxybenzoic acids as are models based upon electrostatic effects.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigate electron acceleration due to shear Alfven waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfven speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfven wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2−NMI-S2)Fe2(CO)6] (3, py = pyridine(ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(CO) and ν(CO)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3•− generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the chargeseparated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3•− is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMIS2−Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Organic-inorganic hybrid materials based on the assembly between inorganic 2D host structure and polymer have received considerable attention in the last few years. This emerging class of materials presents several applications according to their structural and functional properties. Particularly, among others, layered double hydroxides (LDHs) provide the opportunity of preparing new organically modified 2D nanocomposites. Pyrrole carboxylic acid derivatives, namely 4-(lH-pyrrol-1-yl)benzoate, 3-(pyrrol-i-yl)-propanoate,7-(pyrrol-1-yl)-heptanoate, and aniline carboxylic acid derivative, namely 3-aminobenzoic acid, have been intercalated in LDHs of intralamellar composition Zn2Al(OH)(6). The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by powder X-ray diffraction patterns (PXRD), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and electron spin resonance (ESR). The basal spacing found by the PXRD technique gives evidence of the formation of bilayers of the intercalated anions. ESR spectra present a typical signal with a superhyperfine structure with 6 + 1 lines (g = 2.005 +/- 0.0004), which is assigned to the interaction between a carboxylate radical from the guest molecules and a nearby aluminium nucleus (I = 5/2) from the host structure. Additionally, the ESR data suggest that the monomers are connected to each other in limited number after thermal treatment. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.