947 resultados para Distribution generation
Resumo:
To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This paper discusses a method, Generation in Context, for interrogating theories of music analysis and music perception. Given an analytic theory, the method consists of creating a generative process that implements the theory in reverse. Instead of using the theory to create analyses from scores, the theory is used to generate scores from analyses. Subjective evaluation of the quality of the musical output provides a mechanism for testing the theory in a contextually robust fashion. The method is exploratory, meaning that in addition to testing extant theories it provides a general mechanism for generating new theoretical insights. We outline our initial explorations in the use of generative processes for music research, and we discuss how generative processes provide evidence as to the veracity of theories about how music is experienced, with insights into how these theories may be improved and, concurrently, provide new techniques for music creation. We conclude that Generation in Context will help reveal new perspectives on our understanding of music.
Resumo:
1. Species' distribution modelling relies on adequate data sets to build reliable statistical models with high predictive ability. However, the money spent collecting empirical data might be better spent on management. A less expensive source of species' distribution information is expert opinion. This study evaluates expert knowledge and its source. In particular, we determine whether models built on expert knowledge apply over multiple regions or only within the region where the knowledge was derived. 2. The case study focuses on the distribution of the brush-tailed rock-wallaby Petrogale penicillata in eastern Australia. We brought together from two biogeographically different regions substantial and well-designed field data and knowledge from nine experts. We used a novel elicitation tool within a geographical information system to systematically collect expert opinions. The tool utilized an indirect approach to elicitation, asking experts simpler questions about observable rather than abstract quantities, with measures in place to identify uncertainty and offer feedback. Bayesian analysis was used to combine field data and expert knowledge in each region to determine: (i) how expert opinion affected models based on field data and (ii) how similar expert-informed models were within regions and across regions. 3. The elicitation tool effectively captured the experts' opinions and their uncertainties. Experts were comfortable with the map-based elicitation approach used, especially with graphical feedback. Experts tended to predict lower values of species occurrence compared with field data. 4. Across experts, consensus on effect sizes occurred for several habitat variables. Expert opinion generally influenced predictions from field data. However, south-east Queensland and north-east New South Wales experts had different opinions on the influence of elevation and geology, with these differences attributable to geological differences between these regions. 5. Synthesis and applications. When formulated as priors in Bayesian analysis, expert opinion is useful for modifying or strengthening patterns exhibited by empirical data sets that are limited in size or scope. Nevertheless, the ability of an expert to extrapolate beyond their region of knowledge may be poor. Hence there is significant merit in obtaining information from local experts when compiling species' distribution models across several regions.
Resumo:
This paper presents a reliability-based reconfiguration methodology for power distribution systems. Probabilistic reliability models of the system components are considered and Monte Carlo method is used while evaluating the reliability of the distribution system. The reconfiguration is aimed at maximizing the reliability of the power supplied to the customers. A binary particle swarm optimization (BPSO) algorithm is used as a tool to determine the optimal configuration of the sectionalizing and tie switches in the system. The proposed methodology is applied on a modified IEEE 13-bus distribution system.
Resumo:
In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us to understand the impact of estimation error on the performance of in-sample optimal portfolios. Key Words: minimum-variance frontier; efficiency set constants; finite sample distribution
Resumo:
A comprehensive voltage imbalance sensitivity analysis and stochastic evaluation based on the rating and location of single-phase grid-connected rooftop photovoltaic cells (PVs) in a residential low voltage distribution network are presented. The voltage imbalance at different locations along a feeder is investigated. In addition, the sensitivity analysis is performed for voltage imbalance in one feeder when PVs are installed in other feeders of the network. A stochastic evaluation based on Monte Carlo method is carried out to investigate the risk index of the non-standard voltage imbalance in the network in the presence of PVs. The network voltage imbalance characteristic based on different criteria of PV rating and location and network conditions is generalized. Improvement methods are proposed for voltage imbalance reduction and their efficacy is verified by comparing their risk index using Monte Carlo simulations.
Resumo:
This paper proposes new droop control methods for load sharing in a rural area with distributed generation. Highly resistive lines, typical of rural low voltage networks, always create a big challenge for conventional droop control. To overcome the conflict between higher feedback gain for better power sharing and system stability in angle droop, two control methods have been proposed. The first method considers no communication among the distributed generators (DGs) and regulates the converter output voltage and angle ensuring proper sharing of load in a system having strong coupling between real and reactive power due to high line resistance. The second method, based on a smattering of communication, modifies the reference output volt-age angle of the DGs depending on the active and reactive power flow in the lines connected to point of common coupling (PCC). It is shown that with the second proposed control method, an economical and minimum communication system can achieve significant improvement in load sharing. The difference in error margin between proposed control schemes and a more costly high bandwidth communication system is small and the later may not be justified considering the increase in cost. The proposed control shows stable operation of the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
An algorithm based on the concept of Kalman filtering is proposed in this paper for the estimation of power system signal attributes, like amplitude, frequency and phase angle. This technique can be used in protection relays, digital AVRs, DSTATCOMs, FACTS and other power electronics applications. Furthermore this algorithm is particularly suitable for the integration of distributed generation sources to power grids when fast and accurate detection of small variations of signal attributes are needed. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations are presented to highlight the usefulness of the proposed approach. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.
Resumo:
This paper proposes a method enhancing stability of an autonomous microgrid with distribution static compensator (DSTATCOM) and power sharing with multiple distributed generators (DG). It is assumed that all the DGs are connected through voltage source converter (VSC) and all connected loads are passive, making the microgrid totally inertia less. The VSCs are controlled by either state feedback or current feedback mode to achieve desired voltage-current or power outputs respectively. A modified angle droop is used for DG voltage reference generation. Power sharing ratio of the proposed droop control is established through derivation and verified by simulation results. A DSTATCOM is connected in the microgrid to provide ride through capability during power imbalance in the microgrid, thereby enhancing the system stability. This is established through extensive simulation studies using PSCAD.
Resumo:
Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
There has been a developing interest in smart grids, the possibility of significantly enhanced performance from remote measurements and intelligent controls. For transmission the use of PMU signals from remote sites and direct load shed controls can give significant enhancement for large system disturbances rather than relying on local measurements and linear controls. This lecture will emphasize what can be found from remote measurements and the mechanisms to get a smarter response to major disturbances. For distribution systems there has been a significant history in the area of distribution reconfiguration automation. This lecture will emphasize the incorporation of Distributed Generation into distribution networks and the impact on voltage/frequency control and protection. Overall the performance of both transmission and distribution will be impacted by demand side management and the capabilities built into the system. In particular, we consider different time scales of load communication and response and look to the benefits for system, energy and lines.