909 resultados para Distributed parameter networks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Networked control systems (NCSs) are distributed control systems in which the sensors, actuators, and controllers are physically separated and connected through an industrial network. The main challenge related to the development of NCSs is the degenerative effects caused by the inclusion of this communication network in the closed loop control. In order to mitigate these effects, co-simulation tools for NCS have been developed to study the network influence in the NCS. This paper presents a revision about co-simulation tools for NCS and the application of two of these tools for the design and evaluation of NCSs. The TrueTime and Jitterbug tools were used together to evaluate the main configuration parameter that affects the performance of CAN-based NCS and to verify the NCS quality of control under various timing conditions including different transmission period of messages and network delays. Therefore, the simulation results led to the conclusion that despite the transmission period of messages is the most significant factor among the analyzed in the design of NCS, its influence is related to the kind of system with greater effects in NCSs with fast dynamics.
Resumo:
In this paper, we propose a Layered Clustering Hierarchy (LCH) communication protocol for Wireless Sensor Networks (WSNs). The design of LCH has two goals: scalability and energy-efficiency. In LCH, the sensor nodes are organized as a layered clustering structure. Each layer runs a distributed clustering protocol. By randomizing the rotation of cluster heads in each layer, the energy load is distributed evenly across sensors in the network. Our simulations show that LCH is effective in densely deployed sensor networks. On average, 70% of live sensor nodes are involved directly in the clustering communication hierarchy. Moreover, the simulations also show that the energy load and dead nodes are distributed evenly over the network. As studies prove that the performance of LCH depends mainly on the distributed clustering protocol, the location of cluster heads and cluster size are two critical factors in the design of LCH.
Resumo:
Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Key distribution has been extensively studied in the context of sensor networks. However, key revocation has received relatively little attention. Existing key revocation schemes can be divided into two categories: centralized key revocation scheme and distributed key revocation scheme. In this paper, we first summarize the current key revocation schemes for sensor networks. Then, we propose an efficient centralized key revocation scheme, KeyRev, for wireless sensor networks. Unlike most proposed key revocation schemes focusing on removing the compromised keys, we propose to use key updating techniques to obsolesce the keys owned by the compromised sensor nodes and thus remove the nodes from the network. Our analyses show that the KeyRev scheme is secure inspite of not removing the pre-distributed key materials at compromised sensor nodes. Simulation results also indicate that the KeyRev scheme is scalable and performs very well in wireless sensor networks.
Resumo:
In this paper, we propose a Loss Tolerant Reliable (LTR) data transport mechanism for dynamic Event Sensing (LTRES) in WSNs. In LTRES, a reliable event sensing requirement at the transport layer is dynamically determined by the sink. A distributed source rate adaptation mechanism is designed, incorporating a loss rate based lightweight congestion control mechanism, to regulate the data traffic injected into the network so that the reliability requirement can be satisfied. An equation based fair rate control algorithm is used to improve the fairness among the LTRES flows sharing the congestion path. The performance evaluations show that LTRES can provide LTR data transport service for multiple events with short convergence time, low lost rate and high overall bandwidth utilization.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution
Resumo:
The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.
Resumo:
Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with regard to the authors or journals cited. In this paper, we assess approaches for citations considering two recommendations for authors to follow while preparing a manuscript: (i) consider similarity of contents with the topics investigated, lest related work should be reproduced or ignored; (ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv and the Web of Science repositories to show that neither of these two criteria is fulfilled in practice. By representing the texts as complex networks we estimated a similarity index between pieces of texts and found that the list of references did not contain the most similar papers in the dataset. This was quantified by calculating a consistency index, whose maximum value is one if the references in a given paper are the most similar in the dataset. For the areas of "complex networks" and "graphenes", the consistency index was only 0.11-0.23 and 0.10-0.25, respectively. To simulate a systematic search in the citation network, we employed a traditional random walk search (i.e. diffusion) and a random walk whose probabilities of transition are proportional to the number of the ingoing edges of the neighbours. The frequency of visits to the nodes (papers) in the network had a very small correlation with either the actual list of references in the papers or with the number of downloads from the arXiv repository. Therefore, apparently the authors and users of the repository did not follow the criterion related to a systematic search over the network of citations. Based on these results, we propose an approach that we believe is fairer for evaluating and complementing citations of a given author, effectively leading to a virtual scientometry.
Resumo:
Abstract Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.
Resumo:
Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.
Resumo:
Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.