947 resultados para Differential equations, Nonlinear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenon of patterned distribution of pH near the cell membrane of the algae Chara corallina upon illumination is well-known. In this paper, we develop a mathematical model, based on the detailed kinetic analysis of proton fluxes across the cell membrane, to explain this phenomenon. The model yields two coupled nonlinear partial differential equations which describe the spatial dynamics of proton concentration changes and transmembrane potential generation. The experimental observation of pH pattern formation, its period and amplitude of oscillation, and also its hysteresis in response to changing illumination, are all reproduced by our model. A comparison of experimental results and predictions of our theory is made. Finally, a mechanism for pattern formation in Chara corallina is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3. PRACTICAL RESOLUTION OF DIFFERENTIAL SYSTEMS by Marilia Pires, University of Évora, Portugal This practice presents the main features of a free software to solve mathematical equations derived from concrete problems: i.- Presentation of Scilab (or python) ii.- Basics (number, characters, function) iii.- Graphics iv.- Linear and nonlinear systems v.- Differential equations

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper aims to develop an implicit meshless approach based on the radial basis function (RBF) for numerical simulation of time fractional diffusion equations. The meshless RBF interpolation is firstly briefed. The discrete equations for two-dimensional time fractional diffusion equation (FDE) are obtained by using the meshless RBF shape functions and the strong-forms of the time FDE. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical examples with different problem domains and different nodal distributions are studied to validate and investigate accuracy and efficiency of the newly developed meshless approach. It has proven that the present meshless formulation is very effective for modeling and simulation of fractional differential equations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crosstalk between fibroblasts and keratinocytes is a vital component of the wound healing process, and involves the activity of a number of growth factors and cytokines. In this work, we develop a mathematical model of this crosstalk in order to elucidate the effects of these interactions on the regeneration of collagen in a wound that heals by second intention. We consider the role of four components that strongly affect this process: transforming growth factor-beta, platelet-derived growth factor, interleukin-1 and keratinocyte growth factor. The impact of this network of interactions on the degradation of an initial fibrin clot, as well as its subsequent replacement by a matrix that is mainly comprised of collagen, is described through an eight-component system of nonlinear partial differential equations. Numerical results, obtained in a two-dimensional domain, highlight key aspects of this multifarious process such as reepithelialisation. The model is shown to reproduce many of the important features of normal wound healing. In addition, we use the model to simulate the treatment of two pathological cases: chronic hypoxia, which can lead to chronic wounds; and prolonged inflammation, which has been shown to lead to hypertrophic scarring. We find that our model predictions are qualitatively in agreement with previously reported observations, and provide an alternative pathway for gaining insight into this complex biological process.