901 resultados para DIFFERENTIALLY EXPRESSED GENES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Helicobacter pylori infection is a risk factor for gastric cancer, which is a major health issue worldwide. Gastric cancer has a poor prognosis due to the unnoticeable progression of the disease and surgery is the only available treatment in gastric cancer. Therefore, gastric cancer patients would greatly benefit from identifying biomarker genes that would improve diagnostic and prognostic prediction and provide targets for molecular therapies. DNA copy number amplifications are the hallmarks of cancers in various anatomical locations. Mechanisms of amplification predict that DNA double-strand breaks occur at the margins of the amplified region. The first objective of this thesis was to identify the genes that were differentially expressed in H. pylori infection as well as the transcription factors and signal transduction pathways that were associated with the gene expression changes. The second objective was to identify putative biomarker genes in gastric cancer with correlated expression and copy number, and the last objective was to characterize cancers based on DNA copy number amplifications. DNA microarrays, an in vitro model and real-time polymerase chain reaction were used to measure gene expression changes in H. pylori infected AGS cells. In order to identify the transcription factors and signal transduction pathways that were activated after H. pylori infection, gene expression profiling data from the H. pylori experiments and a bioinformatics approach accompanied by experimental validation were used. Genome-wide expression and copy number microarray analysis of clinical gastric cancer samples and immunohistochemistry on tissue microarray were used to identify putative gastric cancer genes. Data mining and machine learning techniques were applied to study amplifications in a cross-section of cancers. FOS and various stress response genes were regulated by H. pylori infection. H. pylori regulated genes were enriched in the chromosomal regions that are frequently changed in gastric cancer, suggesting that molecular pathways of gastric cancer and premalignant H. pylori infection that induces gastritis are interconnected. 16 transcription factors were identified as being associated with H. pylori infection induced changes in gene expression. NF-κB transcription factor and p50 and p65 subunits were verified using elecrophoretic mobility shift assays. ERBB2 and other genes located in 17q12- q21 were found to be up-regulated in association with copy number amplification in gastric cancer. Cancers with similar cell type and origin clustered together based on the genomic localization of the amplifications. Cancer genes and large genes were co-localized with amplified regions and fragile sites, telomeres, centromeres and light chromosome bands were enriched at the amplification boundaries. H. pylori activated transcription factors and signal transduction pathways function in cellular mechanisms that might be capable of promoting carcinogenesis of the stomach. Intestinal and diffuse type gastric cancers showed distinct molecular genetic profiles. Integration of gene expression and copy number microarray data allowed the identification of genes that might be involved in gastric carcinogenesis and have clinical relevance. Gene amplifications were demonstrated to be non-random genomic instabilities. Cell lineage, properties of precursor stem cells, tissue microenvironment and genomic map localization of specific oncogenes define the site specificity of DNA amplifications, whereas labile genomic features define the structures of amplicons. These conclusions suggest that the definition of genomic changes in cancer is based on the interplay between the cancer cell and the tumor microenvironment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy, Several genes have been identified and cloned from the carrot system, These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using a Cuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New blood cells are continuously provided by self-renewing multipotent hematopoietic stem cells (HSC). The capacity of HSCs to regenerate the hematopoietic system is utilized in the treatment of patients with hematological malignancies. HSCs can be enriched using an antibody-based recognition of CD34 or CD133 glycoproteins on the cell surface. The CD133+ and CD34+ cells may have partly different roles in hematopoiesis. Furthermore, each cell has a glycome typical for that cell type. Knowledge of HSC glycobiology can be used to design therapeutic cells with improved cell proliferation or homing properties. The present studies characterize the global gene expression profile of human cord blood-derived CD133+ and CD34+ cells, and demonstrate the differences between CD133+ and CD34+ cell populations that may have an impact in transplantation when CD133+ and CD34+ selected cells are used. In addition, these studies unravel the glycome profile of primitive hematopoietic cells and reveal the transcriptional regulation of N-glycan biosynthesis in CD133+ and CD34+ cells. The gene expression profile of CD133+ cells represents 690 differentially expressed transcripts between CD133+ cells and CD133- cells. CD34+ cells have 620 transcripts differentially expressed when compared to CD34- cells. The integrated CD133+/CD34+ cell gene expression profiles proffer novel transcripts to specify HSCs. Furthermore, the differences between the gene expression profiles of CD133+ and CD34+ cells indicate differences in the transcriptional regulation of CD133+ and CD34+ cells. CD133+ cells express a lower number of hematopoietic lineage differentiation marker genes than CD34+ cells. The expression profiles suggest a more primitive nature of CD133+ cells. Moreover, CD133+ cells have characteristic glycome that differ from the glycome of CD133- cells. High mannose-type and biantennary complex-type N-glycans are enriched in CD133+ cells. N-glycosylation-related gene expression pattern of CD133+ cells identify the key genes regulating the CD133+ cell-specific glycosylation including the overexpression of MGAT2 and underexpression of MGAT4. The putative role of MAN1C1 in the increase of unprocessed high mannose-type N-glycans in CD133+ cells is also discussed. These studies provide new information on the characteristics of HSCs. Improved understanding of HSC biology can be used to design therapeutic cells with improved cell proliferation and homing properties. As a result, HSC engineering could further their clinical use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague–Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. Results We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. Conclusion This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chlamydia pneumoniae can cause acute respiratory infections including pneumonia. Repeated and persistent Chlamydia infections occur and persistent C. pneumoniae infection may have a role in the pathogenesis of atherosclerosis and coronary heart disease and may also contribute to the development of chronic inflammatory lung diseases like chronic obstructive pulmonary disease (COPD) and asthma. In this thesis in vitro models for persistent C. pneumonia infection were established in epithelial and monocyte/macrophage cell lines. Expression of host cell genes in the persistent C. pneumoniae infection model of epithelial cells was studied by microarray and RT-PCR. In the monocyte/macrophage infection model expression of selected C. pneumoniae genes were studied by RT-PCR and immunofluorescence microscopy. Chlamydia is able to modulate host cell gene expression and apoptosis of host cells, which may assist Chlamydia to evade the host cells' immune responses. This, in turn, may lead to extended survival of the organism inside epithelial cells and promote the development of persistent infection. To simulate persistent C. pneumoniae infection in vivo, we set up a persistent infection model exposing the HL cell cultures to IFN-gamma. When HL cell cultures were treated with moderate concentration of IFN-gamma, the replication of C. pneumoniae DNA was unaffected while differentiation into infectious elementary bodies (EB) was strongly inhibited. By transmission electron microscopy small atypical inclusions were identified in IFN-gamma treated cultures. No second cycle of infection was observed in cells exposed to IFN-gamma , whereas C. pneumoniae was able to undergo a second cycle of infection in unexposed HL cells. Although monocytic cells can naturally restrict chlamydial growth, IFN-gamma further reduced production of infectious C. pneumoniae in Mono Mac 6 cells. Under both studied conditions no second cycle of infection could be detected in monocytic cell line suggesting persistent infection in these cells. As a step toward understanding the role of host genes in the development and pathogenesis of persistent C. pneumoniae infection, modulation of host cell gene expression during IFN-gamma induced persistent infection was examined and compared to that seen during active C. pneumoniae infection or IFN-gamma treatment. Total RNA was collected at 6 to 150 h after infection of an epithelial cell line (HL) and analyzed by a cDNA array (available at that time) representing approximately 4000 human transcripts. In initial analysis 250 of the 4000 genes were identified as differentially expressed upon active and persistent chlamydial infection and IFN-gamma treatment. In persistent infection more potent up-regulation of many genes was observed in IFN-gamma induced persistent infection than in active infection or in IFN-gamma treated cell cultures. Also sustained up-regulation was observed for some genes. In addition, we could identify nine host cell genes whose transcription was specifically altered during the IFN-gamma induced persistent C. pneumoniae infection. Strongest up-regulation in persistent infection in relation to controls was identified for insulin like growth factor binding protein 6, interferon-stimulated protein 15 kDa, cyclin D1 and interleukin 7 receptor. These results suggest that during persistent infection, C. pneumoniae reprograms the host transcriptional machinery regulating a variety of cellular processes including adhesion, cell cycle regulation, growth and inflammatory response, all of which may play important roles in the pathogenesis of persistent C. pneumoniae infection. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that the bacterium can also infect monocytic cells in vivo and thereby monocytes can assist the spread of infection from the lungs to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells and that IFN-gamma has a less significant effect on C. pneumoniae transcription in monocytes. Furthermore, our study shows that type III secretion system (T3SS) related genes are transcribed and that Chlamydia possesses a functional T3SS during infection in monocytes. Since C. pneumoniae infection in monocytes has been implicated to have reduced antibiotic susceptibility, this creates opportunities for novel therapeutics targeting T3SS in the management of chlamydial infection in monocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Triplex forming oligonucleotides (TFOs) have the potential to modulate gene expression. While most of the experiments are directed towards triplex mediated inhibition of gene expression the strategy potentially could be used for gene specific activation. In an attempt to design a strategy for gene specific activation in vivo applicable to a large number of genes we have designed a TFO based activator-target system which may be utilized in Saccharomyces cerevisiae or any other system where Gal4 protein is ectopically expressed. The total genome sequence of Saccharomyces cerevisiae and expression profiles were used to select the target genes with upstream poly (pu/py) sequences. We have utilized the paradigm of Gal4 protein and its binding site. We describe here the selection of target genes and design of hairpin-TFO including the targeting sequences containing polypurine stretch found in the upstream promoter regions of weakly expressed genes. We demonstrate, the formation of hairpin-TFO, its binding to Gal4 protein, its ability to form triplex with the target duplex in vitro, the effect of polyethylenimine on complex formation and discuss the implication on in vivo transcription activation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In several species including the buffalo cow, prostaglandin (PG) F-2 alpha is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF(2 alpha) in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF(2 alpha) treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF(2 alpha) treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E-2 receptors and circulating and intra luteal E-2 post PGF(2 alpha) treatment. Mining of microarray data revealed several differentially expressed E-2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF(2 alpha)-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E-2 responsive genes between both the species. Taken together, the results of this study suggest that PGF(2 alpha) interferes with luteotrophic signaling, impairs intraluteal E-2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific alpha-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with similar to 19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Age related decline in reproductive performance in women is well documented and apoptosis has been considered as one of the reasons for the decline of primordial follicle reserve. Recently we observed a decline in the efficiency of DNA repair ability in aged rat primordial follicles as demonstrated by decreased mRNA levels of DNA repair genes BRCA1 and H2AX. In the present study, a two-dimensional electrophoresis (2DE) proteomic approach was employed to identify differentially expressed proteins in primordial follicles isolated from ovaries of immature (approximate to 20 days) and aged (approximate to 400-450 days) rats. Using MALDI-TOF/TOF MS, we identified 13 differentially expressed proteins (p<0.05) which included seven up-regulated and six down-regulated proteins in aged primordial follicles. These proteins are involved in a wide range of biological functions including apoptosis, DNA repair, and the immune system. Interestingly, the differentially expressed proteins such as FIGNL1 (DNA repair) and BOK (apoptotic protein) have not been previously reported in the rat primordial follicles and these proteins can be related to some common features of ovarian aging such as loss of follicle reserve and genome integrity. The quantitative differences of two important proteins BOK and FIGNL1 observed by the proteomic analysis were correlated with the transcript levels, as determined by semi-quantitative RT-PCR. Our results improve the current knowledge about protein factors associated with molecular changes in rat primordial follicles as a function of aging and our understanding of the proteomic processes involved in degenerative changes observed in aging primordial follicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p) ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Delta rel(Msm) and Delta dcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015, http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p) ppGpp and c-di-GMP in mycobacteria. We have shown that both (p) ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Delta rel(Msm) and Delta dcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p) ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p) ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p) ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Delta rel(Msm) and Delta dcpA strains are defective in biofilm formation. In this work, the overproduction of (p) ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p) ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p) ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene microarray technology is highly effective in screening for differential gene expression and has hence become a popular tool in the molecular investigation of cancer. When applied to tumours, molecular characteristics may be correlated with clinical features such as response to chemotherapy. Exploitation of the huge amount of data generated by microarrays is difficult, however, and constitutes a major challenge in the advancement of this methodology. Independent component analysis (ICA), a modern statistical method, allows us to better understand data in such complex and noisy measurement environments. The technique has the potential to significantly increase the quality of the resulting data and improve the biological validity of subsequent analysis. We performed microarray experiments on 31 postmenopausal endometrial biopsies, comprising 11 benign and 20 malignant samples. We compared ICA to the established methods of principal component analysis (PCA), Cyber-T, and SAM. We show that ICA generated patterns that clearly characterized the malignant samples studied, in contrast to PCA. Moreover, ICA improved the biological validity of the genes identified as differentially expressed in endometrial carcinoma, compared to those found by Cyber-T and SAM. In particular, several genes involved in lipid metabolism that are differentially expressed in endometrial carcinoma were only found using this method. This report highlights the potential of ICA in the analysis of microarray data.