634 resultados para DETACHMENT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The degree of genetic and pathologic variation exhibited by a turkey Coronavirus (TCoV) strain was investigated after nine serial passages in 25-day-old turkey embryos obtained from wild broad-breasted bronze breeders. In spite of spleen, liver, kidneys, cloacal bursa and thymus have been collected and analysed, the main histopathological changes were only documented in the intestine sections. Microscopic lesions were characterized as mild enteritis, low degree of enterocyte vacuolization and detachment of the intestinal villous after five consecutive passages and were considered absent in the last passages. Genealogic analysis based on S1 and S2 DNA sequences suggested that Brazilian isolate might be considered as originated from TCoV strains circulating in the United States, as 100% identity with TCoV-Gl strain. Although S1 S2 sequences from each passage revealed no significant point mutations, and no correlation could be speculate between S2 nucleotide changes and pathologic features in infected embryos. This is the first demonstration of wild turkey embryos as a model for TCoV isolation and propagation.
Resumo:
Background:Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation.Methodology/Principal Findings:Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group.Conclusions/Significance:In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and increased mRNA levels to neurotrophins and anti-inflammatory cytokines that may in turn, contribute to improving recovery of motor function. © 2013 Barbizan et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)