914 resultados para Cosmetic filler


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’art public se présente sous divers modes d’expression artistique dans l’espace public. Qu’il soit permanent, temporaire ou éphémère, qu’il soit singulier, interactif ou participatif, qu’il soit traditionnel ou numérique, l’œuvre intégrée ou insérée dans ce contexte tente d’interpeller le public. Cette recherche examine l’évolution des modes d’expression artistique dans l’espace public, dans l’espoir de trouver une définition de l’art public. L’étude de cas de la Ville de Montréal est la base de cette recherche pour examiner les nombreuses manifestations de l’art dans l’espace public et ses périmètres. Dans une perspective conceptuelle et transdisciplinaire, sous lesquels nous considérons les approches artistiques, paysagères et politiques dans l’analyse du sujet, nous nous intéressons aux frontières des modes d’expression artistique et les moyens de les représenter. En somme, nous souhaitons saisir ce que l’on considère comme l’art public dans l’aménagement urbain montréalais et générer des connaissances plus générales. Notre revue de littérature et les observations faites sur le terrain révèlent de nouveaux enjeux qui influencent les pratiques artistiques et la perception que peut susciter une œuvre d’art public aujourd’hui. Nous examinons les facteurs qui les influencent à ce jour. En étudiant la question, nous constatons que la tâche de définir ce qui constitue l'art public est difficile, d'autant plus que les pratiques évoluent constamment. Souvent définie comme une fonction plus cosmétique qu’artistique et dans une logique d'équipement, l'art dans l'espace public joue un rôle passif et fait l'objet de débats et de critiques. Pour le public, l'art public est difficile à discerner bien que sa présence semble être appréciée. Nos résultats mettent en lumière la complexité des processus politiques, les attentes spécifiques, les règles et modalités oppressantes pour l'artiste, la difficulté à saisir les œuvres d'art et le manque de médiatisation pour sensibiliser le public. Avec la politique d'intégration, l’art dans les espaces publics résulte souvent d'une médiation conflictuelle dans un rapport de compromis et d’attentes contrastées afin que soit réalisée une œuvre. Les résultats permettent de penser que les processus de sélection sont souvent pervers et fermés aux initiatives artistiques. En outre, il serait nécessaire dans ce contexte que les artistes définissent mieux leur statut professionnel et leur pratique. Malgré des efforts du Bureau d'art public de Montréal, l'art public semble peu perçu sur son territoire. Par ailleurs, les nombreuses discussions avec le grand public portent à l'attention l'absence de médiatisation pour les arts publics sur le territoire de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Une composante PRE (potentiel relié aux événements) nommée la N2pc est associée au déploiement de l’attention visuo-spatiale. Nous avons examiné la modulation de la N2pc en fonction de la présence ou l’absence d’une cible, la séparation physique de deux items saillants ainsi que leur similarité. Les stimuli présentés étaient des lignes variant selon leur orientation et leur couleur, les items saillants étant bleus et les items non saillants, gris. Les résultats démontrent une augmentation de l’amplitude de la N2pc en lien avec la distance séparant deux items saillants ainsi qu’une augmentation de l’amplitude de la N2pc lorsque les items saillants avaient des orientations plus similaires. Aucune interaction entre ces deux facteurs n’a été observée. Une interaction significative a par contre été observée entre la présence/absence d’une cible et la similarité du distracteur avec la cible recherchée. Ces résultats montrent une dissociation entre l’activité reliée à la distance entre les items saillants et celle qui est reliée à la similarité distracteur-cible, car ils ne peuvent pas être expliqués par un seul mécanisme. Donc, les résultats suggèrent qu’une combinaison de traitement ascendant et de traitement descendant module la composante N2pc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical properties of filled natural rubber latex vulcanizates were found to be improved by the addition of polyethylene glycols of different molecular weight and glycerol. There is a slight reduction in the optimum cure times of the compounds containing PEG/Glycerol. The morphology study shows that the filler distribution is more uniform in the compounds containing PEG/Glycerol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of the proposed work are preparation of ceramic nickel zinc ferrite belonging to the series Ni1-XZnXFe2O4 with x varying from 0 to 1in steps of 0.2, structrural, magnetic and electrical characterization of Ni1-XZnXFe2O4, preparation and evaluation of Cure characteristics of Rubber Ferrite Composites (RFCs), magnetic characterization of RFCs using vibrating sample magnetometer (VSM), electrical characterization of RFCs and estimation of magnetostriction constant form HL parameters. The study deals with the structural and magnetic properties of ceramic fillers, variation of coercivity with composition and the variation of magnetization for different filler loadings are compared and correlated. The dielectric properties of ceramic Ni1-XZnXFe2O4 and rubber ferrite composites containing Ni1-XZnXFe2O4 were evaluated and the ac electrical conductivity (ac) of ceramic as well as composite samples can be calculated by using a simple relationship of the form ac = 2f tan 0r, with the data available from dielectric measurements. The results suggest that the ac electrical conductivity is directly proportional to the frequency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was undertaken with the primary objective of explaining differences in consumption of personal care products using personality variables. Several streams of research reported were reviewed and a conceptual model was developed. Theories on the relationship between self concept and behaviour was reviewed and the need to use individual difference variables to conceptualize and measure the salient dimensions of the self were emphasized. Theories relating to social comparison, eating disorders, role of idealized media images in shaping the self-concept, evidence on cosmetic surgery and persuasibility were reviewed in the study. These came from diverse fields like social psychology, use of cosmetics, women studies, media studies, self-concept literature in psychology and consumer research, and marketing. From the review three basic dimensions, namely self-evaluation, self-awareness and persuasibility were identified and they were posited to be related to consumption. Several personality variables from these conceptual domains were identified and factor analysis confirmed the expected structure fitting the basic theoretical dimensions. Demographic variables like gender and income were also considered.It was found that self-awareness measured by the variable public self-consciousness explain differences in consumption of personal care products. The relationship between public self-consciousness and consumption was found to be most conspicuous in cases of poor self-, evaluation measured by self-esteem. Susceptibility to advertising also was found to explain differences in consumption.From the research, it may be concluded that personality variables are useful for explaining consumption and they must be used together to explain and understand the process. There may not be obvious and conspicuous links between individual measures and behaviour in marketing. However, when used in proper combination and with the help oftheoretical models personality offers considerable explanatory power as illustrated in the seventy five percent accuracy rate of prediction obtained in binary logistic regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites based on natural rubber and nano-sized nickelwere synthesized by incorporating nickel nanoparticles in a natural rubber matrix for various loadings of the filler. Structural, morphological, magnetic and mechanical properties of the compositeswere evaluated along with a detailed study of dielectric properties. Itwas found that nickel particleswere uniformly distributed in the matrix without agglomeration resulting in a magnetic nanocomposite. The elastic properties showed an improvement with increase in filler content but breaking stress and breaking strain were found to decrease. Dielectric permittivity was found to decrease with increase in frequency, and found to increase with increase in nickel loading. The decrease in permittivity with temperature is attributed to the high volume expansivity of rubber at elevated temperatures. Dielectric loss of blank rubber as well as the composites was found to increase with temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various compositions of linear low density polyethylene(LLDPE) containing bio-filler(either starch or dextrin)of various particle sizes were prepared.The mechanical,thermal,FTIR,morphological(SEM),water absorption and melt flow(MFI) studies were carried out.Biodegradability of the compositions were determined using a shake culture flask containing amylase producing bacteria(vibrios),which were isolated from marine benthic environment and by soil burial test. The effect of low quantities of metal oxides and metal stearate as pro-oxidants in LLDPE and in the LLDPE-biofiller compositions was established by exposing the samples to ultraviolet light.The combination of bio-filler and a pro-oxidant improves the degradation of linear low density polyethylene.The maleation of LLDPE improves the compatibility of the c blend components and thepro-oxidants enhance the photodegradability of the compatibilised blends.The responsibility studies on the partially biodegradable LLDPE containing bio-fillers and pro-oxidants suggest that the blends could be repeatedly reprocessed without deterioration in mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work deals with investigations on some technologically important polymer nanocomposite films and semi crystalline polypyrrole films.The work presented in the thesis deals with the realization of novel polymer nanocomposites with enhanced functionalities and prospects of applications in the fields related to nanophotonics. The development of inorganic/polymer nanocomposites is a rapidly expanding multidisciplinary research area with profound industrial applications. The incorporation of suitable inorganic nanoparticles can endow the resulting nanocomposites with excellent electrical, optical and mechanical properties. The first chapter gives a general introduction to nanotechnology, nanocomposites and conducting polymers. It also emphasizes the significance of ZnO among other semiconductor materials, which forms the inorganic filler in the polymer nanocomposites of the present study. This chapter also gives general ideas on the properties and applications of conducting polymers with special reference to polypyrrole. The objectives of the present investigations are also clearly addressed in this chapter. The second chapter deals with the theoretical aspects and details of all the experimental techniques used in the present work for the synthesis of polymer nanocomposites and polypyrrole samples and their various characterizations. Chapter 3 is based on the preparation and properties of ZnO/Polystyrene nanocomposite film samples. The optical properties of these nanocomoposite films are discussed in detail.Chapter 4 deals with the detailed investigations on the dependence of the optical properties of ZnO/PS nanocomposite films on the size of the nanostructured ZnO filler material. The excellent UV shielding properties of these nanocomposite films form the highlight of this chapter. Chapter 5 gives a detailed analysis of the nonlinear optical properties of ZnO/PS nanocomposite films using Z scan technique. The effect of ZnO particle size in the composite films on the nonlinear properties is discussed. The present study involves two phases of research activities. In the first phase, the linear and nonlinear optical properties of ZnO/polymer nanocomposites are investigated in detail. The second phase of work is centered on the synthesis and related studies on highly crystalline polypyrrole films. In the present study, nanosized ZnO is synthesized using wet chemical method at two different temperatures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis mainly deals with the preparation and studies on magnetic composites based on spinel ferrites prepared both chemically and mechanically. Rubber ferrite composites (RFC) are chosen because of their mouldability and flexibility and the ease with which the dielectric and magnetic properties can be manipulated to make them as useful devices. Natural rubber is chosen as the Matrix because of its local availability and possible value addition. Moreover, NR represents a typical unsaturated nonpolar matrix. The work can be thought of as two parts. Part l concentrates on the preparation and characterization of nanocomposites based on y-Fe203. Part 2 deals with the preparation and characterization of RFCs containing Nickel zinc ferrit In the present study magnetic nanocomposites have been prepared by ionexchange method and the preparation conditions have been optimized. The insitu incorporation of the magnetic component is carried out chemically. This method is selected as it is the easiest and simplest method for preparation of nanocomposite. Nanocomposite samples thus prepared were studied using VSM, Mossbauer spectroscopy, Iron content estimation, and ESR spectroscopy. For the preparation of RFCs, the filler material namely nickel zinc ferrite having the general formula Ni)_xZnxFez04, where x varies from 0 to 1 in steps of 0.2 have been prepared by the conventional ceramic techniques. The system of Nil_xZn"Fe204 is chosen because of their excellent high frequency characteristics. After characterization they are incorporated into the polymer matrix of natural rubber by mechanical method. The incorporation is done according to a specific recipe and for various Loadings of magnetic fillers and also for all compositions. The cure characteristics, magnetic properties and dielectric properties of these composites are evaluated. The ac electrical conductivity of both ceramic nickel zinc ferrites and rubber ferrite composites are also calculated using a simple relation. The results are correlated.