940 resultados para Concept of biological evolution
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Resumo:
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.
Resumo:
Background: The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection. Results: Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N)/d(S)>1) was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time. Conclusion: Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.
Resumo:
This PhD Thesis is devoted to the accurate analysis of the physical properties of Active Galactic Nuclei (AGN) and the AGN/host-galaxy interplay. Due to the broad-band AGN emission (from radio to hard X-rays), a multi-wavelength approach is mandatory. Our research is carried out over the COSMOS field, within the context of the XMM-Newton wide-field survey. To date, the COSMOS field is a unique area for comprehensive multi-wavelength studies, allowing us to define a large and homogeneous sample of QSOs with a well-sampled spectral coverage and to keep selection effects under control. Moreover, the broad-band information contained in the COSMOS database is well-suited for a detailed analysis of AGN SEDs, bolometric luminosities and bolometric corrections. In order to investigate the nature of both obscured (Type-2) and unobscured (Type-1) AGN, the observational approach is complemented with a theoretical modelling of the AGN/galaxy co-evolution. The X-ray to optical properties of an X-ray selected Type-1 AGN sample are discussed in the first part. The relationship between X-ray and optical/UV luminosities, parametrized by the spectral index αox, provides a first indication about the nature of the central engine powering the AGN. Since a Type-1 AGN outshines the surrounding environment, it is extremely difficult to constrain the properties of its host-galaxy. Conversely, in Type-2 AGN the host-galaxy light is the dominant component of the optical/near-IR SEDs, severely affecting the recovery of the intrinsic AGN emission. Hence a multi-component SED-fitting code is developed to disentangle the emission of the stellar populationof the galaxy from that associated with mass accretion. Bolometric corrections, luminosities, stellar masses and star-formation rates, correlated with the morphology of Type-2 AGN hosts, are presented in the second part, while the final part concerns a physically-motivated model for the evolution of spheroidal galaxies with a central SMBH. The model is able to reproduce two important stages of galaxy evolution, namely the obscured cold-phase and the subsequent quiescent hot-phase.
Resumo:
It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA.
Resumo:
Lo scopo di questa tesi è di esplorare l'importanza del concetto giapponese del "ma" nella musica tradizionale, in particolare in quella del compositore Tōru Takemitsu, tramite la traduzione del saggio "The concept of 'ma' and the music of Tōru Takemitsu" (Jonathan L. Chenette, 1982) dall'inglese all'italiano. L'elaborato partirà da un'introduzione generale sul concetto del "ma" nella mentalità giapponese, per proseguire con la biografia di Tōru Takemitsu e una panoramica dei motivi che hanno portato a scegliere la traduzione del saggio di Chenette. Dopo la traduzione in sé e per sé e il commento della stessa, sarà anche fornito in appendice un glossario inglese-italiano della terminologia musicale utilizzata dall'autore all'interno del saggio.
Resumo:
Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites.