901 resultados para Computer Network Resources
Resumo:
ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
The concept of Learning Object (LO) is crucial for the standardization on eLearning. The latest LO standard from IMS Global Learning Consortium is the IMS Common Cartridge (IMS CC) that organizes and distributes digital learning content. By analyzing this new specification we considered two interoperability levels: content and communication. A common content format is the backbone of interoperability and is the basis for content exchange among eLearning systems. Communication is more than just exchanging content; it includes also accessing to specialized systems and services and reporting on content usage. This is particularly important when LOs are used for evaluation. In this paper we analyze the Common Cartridge profile based on the two interoperability levels we proposed. We detail its data model that comprises a set of derived schemata referenced on the CC schema and we explore the use of the IMS Learning Tools Interoperability (LTI) to allow remote tools and content to be integrated into a Learning Management System (LMS). In order to test the applicability of IMS CC for automatic evaluation we define a representation of programming exercises using this standard. This representation is intended to be the cornerstone of a network of eLearning systems where students can solve computer programming exercises and obtain feedback automatically. The CC learning object is automatically generated based on a XML dialect called PExIL that aims to consolidate all the data need to describe resources within the programming exercise life-cycle. Finally, we test the generated cartridge on the IMS CC online validator to verify its conformance with the IMS CC specification.
Resumo:
The teaching-learning process is increasingly focused on the combination of the paradigms “learning by viewing” and “learning by doing.” In this context, educational resources, either expository or evaluative, play a pivotal role. Both types of resources are interdependent and their sequencing would create a richer educational experience to the end user. However, there is a lack of tools that support sequencing essentially due to the fact that existing specifications are complex. The Seqins is a sequencing tool of digital resources that has a fairly simple sequencing model. The tool communicates through the IMS LTI specification with a plethora of e-learning systems such as learning management systems, repositories, authoring and evaluation systems. In order to validate Seqins we integrate it in an e-learning Ensemble framework instance for the computer programming learning.
Resumo:
Paper presented at the 9th European Conference on Knowledge Management, Southampton Solent University, Southampton, UK, 4-5 Sep. 2008. URL: http://academic-conferences.org/eckm/eckm2008/eckm08-home.htm
Resumo:
Paper presented at the ECKM 2010 – 11th European Conference on Knowledge Management, 2-3 September, 2010, Famalicão, Portugal. URL: http://www.academic-conferences.org/eckm/eckm2010/eckm10-home.htm
Resumo:
Existing adaptive educational hypermedia systems have been using learning resources sequencing approaches in order to enrich the learning experience. In this context, educational resources, either expository or evaluative, play a central role. However, there is a lack of tools that support sequencing essentially due to the fact that existing specifications are complex. This paper presents Seqins as a sequencing tool of digital educational resources. Seqins includes a simple and flexible sequencing model that will foster heterogeneous students to learn at different rhythms. The tool communicates through the IMS Learning Tools Interoperability specification with a plethora of e-learning systems such as learning management systems, repositories, authoring and automatic evaluation systems. In order to validate Seqins we integrate it in an e-learning Ensemble framework instance for the computer programming learning domain.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
This paper proposes and reports the development of an open source solution for the integrated management of Infrastructure as a Service (IaaS) cloud computing resources, through the use of a common API taxonomy, to incorporate open source and proprietary platforms. This research included two surveys on open source IaaS platforms (OpenNebula, OpenStack and CloudStack) and a proprietary platform (Parallels Automation for Cloud Infrastructure - PACI) as well as on IaaS abstraction solutions (jClouds, Libcloud and Deltacloud), followed by a thorough comparison to determine the best approach. The adopted implementation reuses the Apache Deltacloud open source abstraction framework, which relies on the development of software driver modules to interface with different IaaS platforms, and involved the development of a new Deltacloud driver for PACI. The resulting interoperable solution successfully incorporates OpenNebula, OpenStack (reuses pre-existing drivers) and PACI (includes the developed Deltacloud PACI driver) nodes and provides a Web dashboard and a Representational State Transfer (REST) interface library. The results of the exchanged data payload and time response tests performed are presented and discussed. The conclusions show that open source abstraction tools like Deltacloud allow the modular and integrated management of IaaS platforms (open source and proprietary), introduce relevant time and negligible data overheads and, as a result, can be adopted by Small and Medium-sized Enterprise (SME) cloud providers to circumvent the vendor lock-in problem whenever service response time is not critical.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.