932 resultados para Combinatorial Designs
Resumo:
The present study shows how nature combined a small number of chemical building blocks to synthesize the acylpolyamine toxins in the venoms of Nephilinae orb-web spiders. Considering these structures in four parts, it was possible to rationalize a way to represent the natural combinatorial chemistry involved in the synthesis of these toxins: an aromatic moiety is connected through a linker amino acid to a polyamine chain, which in turn may be connected to an optional tail. The polyamine chains were classified into seven subtypes (from A to G) depending on the way the small chemical blocks are combined. These polyamine chains may be connected to one of the three possible chromophore moieties: 2,4-dihydroxyphenyl acetic acid, or 4-hydroxyindole acetic acid, or even with the indole acetic group. The connectivity between the aryl moiety and the polyamine chain is usually made through an asparagine residue; optionally a tail may be attached to the polyamine chain; nine different types of tails were identified among the 72 known acylpolyamine toxin structures. The combinations of three chromophores, two types of amino acid linkers, seven sub-types of polyamine backbone, and nine options of tails results in 378 different structural possibilities. However, we detected only 91 different toxin structures, which may represent the most successful structural trials in terms of efficiency of prey paralysis/death.
Resumo:
Nonparametric simple-contrast estimates for one-way layouts based on Hodges-Lehmann estimators for two samples and confidence intervals for all contrasts involving only two treatments are found in the literature.Tests for such contrasts are performed from the distribution of the maximum of the rank sum between two treatments. For random block designs, simple contrast estimates based on Hodges-Lehmann estimators for one sample are presented. However, discussions concerning the significance levels of more complex contrast tests in nonparametric statistics are not well outlined.This work aims at presenting a methodology to obtain p-values for any contrast types based on the construction of the permutations required by each design model using a C-language program for each design type. For small samples, all possible treatment configurations are performed in order to obtain the desired p-value. For large samples, a fixed number of random configurations are used. The program prompts the input of contrast coefficients, but does not assume the existence or orthogonality among them.In orthogonal contrasts, the decomposition of the value of the suitable statistic for each case is performed and it is observed that the same procedure used in the parametric analysis of variance can be applied in the nonparametric case, that is, each of the orthogonal contrasts has a chi(2) distribution with one degree of freedom. Also, the similarities between the p-values obtained for nonparametric contrasts and those obtained through approximations suggested in the literature are discussed.
Resumo:
In this paper, we consider a tiling generated by a Pisot unit number of degree d >= 3 which has a finite expansible property. We compute the states of a finite automaton which recognizes the boundary of the central tile. We also prove in the case d = 3 that the interior of each tile is simply connected.
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
This study assessed cavity preparations produced with different air abrasion tip parameters. Twelve test groups of extracted teeth were prepared to evaluate the parameters of 80 degrees or 45 degrees nozzle angles and 0.38 or 0.48 mm inner tip diameters. All other factors were held constant. A device was made to hold the specimen and air abrasion handpiece that standardized the distance and position relative to the tooth and time of application. The cavities were evaluated by assessing the rounding of the cavosurface margins and cavity floor. Measurements of cavosurface angles and the angle of concavity were made at the deepest portion of the abraded surface using scanning electron micrographs. The cavosurface angles were compared using paired t-test, and the effects of the tip design parameters were analyzed by ANOVA and Duncan's Multiple Range test. From the cavity patterns found in this study, the authors suggest that 80 degrees angle tips are more appropriate than 45 degrees angle tips for making narrow, deep cuts for preventive resin restorations. Conversely, when shallow preparations are needed, as in the case of Class V cavity preparations, cutting patterns of 45 degrees angle tips are more suitable.
Resumo:
A comparative study, with theoretical analysis and digital simulations, of two conditions based on LMI for the quadratic stability of nonlinear continuous-time dynamic systems, described by Takagi-Sugeno fuzzy models, are presented. This paper shows that the methods proposed by Teixeira et. al. in 2003 provide better or at least the same results of a recent method presented in the literature. © 2005 IEEE.
Resumo:
In this paper, a load transport system in platforms is considered. It is a transport device and is modelled as an inverted pendulum built on a car driven by a DC motor. The motion equations were obtained by Lagrange's equations. The mathematical model considers the interaction between the DC motor and the dynamic system. The dynamic system was analysed and a Swarm Control Design was developed to stabilize the model of this load transport system. ©2010 IEEE.
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
Reusable cardboard boxes can be ergonomically designed for internal transportation of dry products in industrial settings. In this study we compared the effects of handling a regular commercial box and two cardboard prototypes on upper limb postures through the evaluation of movements, myoelectrical activity, perceived grip acceptability and capacity for reuse. The ergonomic designs provided a more acceptable grip, safer wrist and elbow movements and lower wrist extensors and biceps activity. Biomechanical disadvantages were observed only for one of the prototypes when handling to high surface. The prototypes were durable and suitable for extensive reuse (more than 2000 handlings) in internal industrial transportation. Despite being slightly more expensive than regular cardboard, the prototypes showed good cost-benefit considering their high durability. Relevance to industry: Cardboard boxes can be efficiently redesigned for allowing safer upper limb movements and lower muscle workload in manual materials handling. New designs can also be extensively reused for internal industrial transportation with good cost-benefit. © 2012 Elsevier B.V.
Resumo:
A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.
Resumo:
The use of saturated two-level designs is very popular, especially in industrial applications where the cost of experiments is too high. Standard classical approaches are not appropriate to analyze data from saturated designs, since we could only get the estimates of the main factor effects and we would not have degrees of freedom to estimate the variance of the error. In this paper, we propose the use of empirical Bayesian procedures to get inferences for data obtained from saturated designs. The proposed methodology is illustrated assuming a simulated data set. © 2013 Growing Science Ltd. All rights reserved.
Resumo:
Includes bibliography