974 resultados para Coefficient of friction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of propagation of a particle through a one-dimensional dissipative medium is presented. The medium is composed of several dissipative sections, which are characterized by their friction coefficients eta. In particular, we have considered two types of friction coefficients distributed orderly or disorderly along the chain. For the same relative proportion of the coefficients, we have found that transport can be enhanced in the disordered distribution in comparison with the ordered one. We also show how this can be considered an approximated way to treat the propagation in a dissipative medium with a position-dependent friction coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new analytical theory including friction was developed to assess strain limits in punch stretching of anisotropic sheet metals. This new approach takes into consideration the anisotropic behaviour of sheet materials and could explain the mechanical behaviour of a variety of anisotropic sheet materials. The theory explains the sheet metal failure so for the drawing as the stretching region of the forming limit curve, particularly for materials that present the strain-ratio dependence of limit strain ε 1, where dε 1/dρ is not always greater than zero. dε 1/ dρ or dε 1/dε 2 could be equal to or smaller than zero for a range of materials. Therefore, this new theory can explains such experimental observations, besides to assuming that membrane element relations near the pole, for the case of punch stretching are dependent of sheet metal properties as the process history and also suggests that the onset of local necking is controlled by shear. Thus, theoretical results obtained through this new approach are compared with experimental results available in the literature. It is demonstrated the effect of friction on a FLC curve for both regions, drawing and stretching. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research addresses the application of friction stir welding (FWS) of titanium alloy Ti–6Al–4V. Friction stir welding is a recent process, developed in the 1990s for aluminum joining; this joining process is being increasingly applied in many industries from basic materials, such as steel alloys, to high performance alloys, such as titanium. It is a process in great development and has its economic advantages when compared to conventional welding. For high performance alloys such as titanium, a major problem to overcome is the construction of tools that can withstand the extreme process environment. In the literature, the possibilities approached are only few tungsten alloys. Early experiments with tools made of cemented carbide (WC) showed optimistic results consistent with the literature. It was initially thought that WC tools may be an option to the FSW process since it is possible to improve the wear resistance of the tool. The metallographic analysis of the welds did not show primary defects of voids (tunneling) or similar internal defects due to processing, only defects related to tool wear which can cause loss of weld quality. The severe tool wear caused loss of surface quality and inclusions of fragments inside the joining, which should be corrected or mitigated by means of coating techniques on tool, or the replacement of cemented carbide with tungsten alloys, as found in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 1923×48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain κ=(1.8–3.4)T3. This implies that the “drag coefficient,” characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is η−1D=(1.8–3.4)(Tc/T)2(M/1.5  GeV)  fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight whole-core samples from Ocean Drilling Program Site 1244, Hydrate Ridge, Cascadia continental margin, were provided to Massachusetts Institute of Technology (Cambridge, Massachusetts, USA) for geotechnical characterization. The samples were collected from depths ranging from 5 to 136 meters below seafloor (mbsf). Seven of the eight whole-core samples were located within the gas hydrate stability zone, whereas the eighth sample was located in the free gas zone. Atterberg limits testing showed that the average liquid limit of the soil is 81% and the average plastic limit is 38%, giving an average plasticity index of 43%. The liquid limit is sensitive to oven drying, shown by a drop in liquid limit to 64% when tests were performed on an oven-dried sample. Loss on ignition averages 5.45 wt%. Constant rate of strain consolidation (CRSC) tests were performed to obtain the compression characteristics of the soil, as well as to determine the stress history of the site. CRSC tests also provided hydraulic conductivity and coefficient of consolidation characteristics for these sediments. The compression ratio (Cc) ranges from 0.340 to 0.704 (average = 0.568). Cc is fairly constant to a depth of 79 mbsf, after which Cc decreases downhole. The recompression ratio (Cr) ranges from 0.035 to 0.064 (average = 0.052). Cr is constant throughout the depth range. In situ hydraulic conductivity varies between 1.5 x 10**-7 and 3 x 10**-8 cm/s and shows no trend with depth. Ko-consolidated undrained compression/extension (CKoUC/E) tests were also performed to determine the peak undrained shear strength, stress-strain curve, and friction angle. The normalized undrained strength ranges from 0.29 to 0.35. The friction angle ranges from 27 to 37. Because of the limited amount of soil, CRSC and CKoUC/E tests were also conducted on resedimented specimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment cored within the Barbados subduction complex at Sites 541 and 542 are underconsolidated. Underconsolidation and changes in physical properties of the cored section can be related to excess pore water pressure that equals the lithostatic load at Site 542 and to major thrust faulting observed at Site 541. Apparently, the pore fluids within the subduction complex are absorbing the tectonic shock of underthrusting. Sediment sampled from the reference Site 543 on the adjacent Atlantic Plate are also underconsolidated. However, underconsolidation in Hole 543 is apparently due to the movement of excess nitrogen gas observed deeper in the hole. Excess gas was not observed at Sites 541 and 542.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2011 Tohoku-Oki earthquake demonstrated that the shallowest reaches of plate boundary subduction megathrusts can host substantial coseismic slip that generates large and destructive tsunamis, contrary to the common assumption that the frictional properties of unconsolidated clay-rich sediments at depths less than View the MathML source should inhibit rupture. We report on laboratory shearing experiments at low sliding velocities (View the MathML source) using borehole samples recovered during IODP Expedition 343 (JFAST), spanning the plate-boundary décollement within the region of large coseismic slip during the Tohoku earthquake. We show that at sub-seismic slip rates the fault is weak (sliding friction µs=0.2-0.26), in contrast to the much stronger wall rocks (µs>~0.5). The fault is weak due to elevated smectite clay content and is frictionally similar to a pelagic clay layer of similar composition. The higher cohesion of intact wall rock samples coupled with their higher amorphous silica content suggests that the wall rock is stronger due to diagenetic cementation and low clay content. Our measurements also show that the strongly developed in-situ fabric in the fault zone does not contribute to its frictional weakness, but does lead to a near-cohesionless fault zone, which may facilitate rupture propagation by reducing shear strength and surface energy at the tip of the rupture front. We suggest that the shallow rupture and large coseismic slip during the 2011 Tohoku earthquake was facilitated by a weak and cohesionless fault combined with strong wall rocks that drive localized deformation within a narrow zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a simple antiplane fault of finite length embedded in a homogeneous isotropic elastic solid to understand the origin of seismic source heterogeneity in the presence of nonlinear rate- and state-dependent friction. All the mechanical properties of the medium and friction are assumed homogeneous. Friction includes a characteristic length that is longer than the grid size so that our models have a well-defined continuum limit. Starting from a heterogeneous initial stress distribution, we apply a slowly increasing uniform stress load far from the fault and we simulate the seismicity for a few 1000 events. The style of seismicity produced by this model is determined by a control parameter associated with the degree of rate dependence of friction. For classical friction models with rate-independent friction, no complexity appears and seismicity is perfectly periodic. For weakly rate-dependent friction, large ruptures are still periodic, but small seismicity becomes increasingly nonstationary. When friction is highly rate-dependent, seismicity becomes nonperiodic and ruptures of all sizes occur inside the fault. Highly rate-dependent friction destabilizes the healing process producing premature healing of slip and partial stress drop. Partial stress drop produces large variations in the state of stress that in turn produce earthquakes of different sizes. Similar results have been found by other authors using the Burridge and Knopoff model. We conjecture that all models in which static stress drop is only a fraction of the dynamic stress drop produce stress heterogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of 14 vertical profiles of currents and hydrological parameters in the near-bottom layer with depth resolution of 0.1 m were carried out in several regions of the Black Sea shelf, at five points over the continental slope, and in three deep water regions. The upper boundary of the benthic boundary layer (BBL) was reliably determined at a point at distance from 5-7 to 35-40 m from the bottom where the gradients of density and current velocity changed. Experimental data obtained were used to determine the coefficient of bottom friction, friction velocity, coefficients of vertical diffusion of momentum and density, and vertical fluxes of temperature and salinity in the BBL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory was developed to allow the separate determination of the effects of the interparticle friction and interlocking of particles on the shearing resistance and deformational behavior of granular materials. The derived parameter, angle of solid friction, is independent of the type of shear test, stress history, porosity and the level of confining pressure, and depends solely upon the nature of the particle surface. The theory was tested against published data concerning the performance of plane strain, triaxial compression and extension tests on cohesionless soils. The theory also was applied to isotropically consolidated undrained triaxial tests on three crushed limestones prepared by the authors using vibratory compaction. The authors concluded that, (1) the theory allowed the determination of solid friction between particles which was found to depend solely on the nature of the particle surface, (2) the separation of frictional and volume change components of shear strength of granular materials qualitatively corroborated the postulated mechanism of deformation (sliding and rolling of groups of particles over other similar groups with resulting dilatancy of specimen), (3) the influence of void ratio, gradation confining pressure, stress history and type of shear test on shear strength is reflected in values of the omega parameter, and (4) calculation of the coefficient of solid friction allows the establishment of the lower limit of the shear strength of a granular material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.