957 resultados para Co-authors
Resumo:
BACKGROUND: Malnutrition, and poor intake during hospitalisation, are common in older medical patients. Better understanding of patient-specific factors associated with poor intake may inform nutritional interventions. AIMS: To measure the proportion of older medical patients with inadequate nutritional intake, and identify patient-related factors associated with this outcome. METHODS: Prospective cohort study enrolling consecutive consenting medical inpatients aged 65 years or older. Primary outcome was energy intake less than resting energy expenditure estimated using weight-based equations. Energy intake was calculated for a single day using direct observation of plate waste. Explanatory variables included age, gender, number of co-morbidities, number of medications, diagnosis, usual residence, nutritional status, functional and cognitive impairment, depressive symptoms, poor appetite, poor dentition, and dysphagia. RESULTS: Of 134 participants (mean age 80 years, 51% female), only 41% met estimated resting energy requirements. Mean energy intake was 1220 kcal/day (SD 440), or 18.1 kcal/kg/day. Factors associated with inadequate energy intake in multivariate analysis were poor appetite, higher BMI, diagnosis of infection or cancer, delirium and need for assistance with feeding. CONCLUSIONS: Inadequate nutritional intake is common, and patient factors contributing to poor intake need to be considered in nutritional interventions.
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.
Resumo:
Well-established distinctions between amateur and professional are blurring as the impact of social media, changes in cultural consumption, and crises in copyright industries’ business models are felt across society and economy. I call this the increasingly rapid co-evolution of the formal market and informal household sectors and analyse it through the concept of ‘social network markets’ – individual choices are made on the basis of other’s choices and such networked preferencing is enhanced by the growing ubiquity of social media platforms. This may allow us better to understand sources of disruption and innovation in audiovisual production and distribution in wealthy Western markets which are as significant as those posed by informal practices outside the West. I examine what is happening around the monetization and professionalization of online video (YouTube, for example) and the socialization of professional production strategies (transmedia, for example) as innovation from the margins.
Resumo:
Drawing on the work of Ian Hunter the authors argue that literary education continues a tradition of circularity of argument derived from the humanities. They propose that the school subject, English in all of its apparently different historical manifestations focuses on the ideals of self-discovery and freedom of expression through literary study. The idea that literary interpretation or the production of specific readings is a skill that is taught in English classrooms challenges traditional understandings of literary study as a means for uncovering or revealing that which is hidden – be it the secrets of the text (or society or culture) or the secrets of the self – in order to come to a fuller realisation of culture and the self. Using examples from their previous work in developing activities for use with students in English classrooms the authors explore what it means to produce one’s ‘own reading’ of a text.
Resumo:
Fibroin extracted from silkworm cocoon silk provides an intriguing and potentially important biomaterial for corneal reconstruction. In the present chapter we outline our methods for producing a composite of two fibroin-based materials that supports the co-cultivation of human limbal epithelial (HLE) cells and human limbal stromal (HLS) cells. The resulting tissue substitute consists of a stratified epithelium overlying a three-dimensional arrangement of extracellular matrix components (principally ‘degummed’ fibroin fibers) and mesenchymal stromal cells. This tissue substitute is currently being evaluated as a tool for reconstructing the corneal limbus and corneal epithelium.
Resumo:
Background The onsite treatment of sewage and effluent disposal is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. It is important therefore that careful consideration is given to the design and location of onsite sewage treatment systems. This requires an understanding of the factors that influence treatment performance. The use of subsurface absorption systems is the most common form of effluent disposal for onsite sewage treatment, particularly for septic tanks. Also, in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Site specific factors play a key role in the onsite treatment of sewage. The project The primary aims of the research project were: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to evaluate current research relating to onsite sewage treatment; and, • to identify key issues where currently there is a lack of relevant research. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of this research project has been on septic tanks. By implication, the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. Five broad categories of soil types prevalent in the Brisbane region have been considered in this project. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each of the different soil types. In the initial phase of the investigation, the majority of the systems evaluated were septic tanks. However, a small number of aerobic wastewater treatment systems (AWTS) were also included. The primary aim was to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of each different type of system investigated was relatively small. Consequently, this does not permit a statistical analysis to be undertaken of the results obtained for comparing different systems. This is an important issue considering the large number of soil physico-chemical parameters and landscape factors that can influence treatment performance and their wide variability. The report This report is the last in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The project component discussed in the current report outlines the detailed soil investigations undertaken at a selected number of sites. In the initial field sampling, a number of soil chemical properties were assessed as indicators to investigate the extent of effluent flow and to help understand what soil factors renovate the applied effluent. The soil profile attributes, especially texture, structure and moisture regime were examined more in an engineering sense to determine the effect of movement of water into and through the soil. It is important to note that it is not only the physical characteristics, but also the chemical characteristics of the soil as well as landscape factors play a key role in the effluent renovation process. In order to understand the complex processes taking place in a subsurface effluent disposal area, influential parameters were identified using soil chemical concepts. Accordingly, the primary focus of this final phase of the research project was to identify linkages between various soil chemical parameters and landscape patterns and their contribution to the effluent renovation process. The research outcomes will contribute to the development of robust criteria for evaluating the performance of subsurface effluent disposal systems. The outcomes The key findings from the soil investigations undertaken are: • Effluent renovation is primarily undertaken by a combination of various soil physico-chemical parameters and landscape factors, thereby making the effluent renovation processes strongly site dependent. • Decisions regarding site suitability for effluent disposal should not be based purely in terms of the soil type. A number of other factors such as the site location in the catena, the drainage characteristics and other physical and chemical characteristics, also exert a strong influence on site suitability. • Sites, which are difficult to characterise in terms of suitability for effluent disposal, will require a detailed soil physical and chemical analysis to be undertaken to a minimum depth of at least 1.2 m. • The Ca:Mg ratio and Exchangeable Sodium Percentage are important parameters in soil suitability assessment. A Ca:Mg ratio of less than 0.5 would generally indicate a high ESP. This in turn would mean that Na and possibly Mg are the dominant exchangeable cations, leading to probable clay dispersion. • A Ca:Mg ratio greater than 0.5 would generally indicate a low ESP in the profile, which in turn indicates increased soil stability. • In higher clay percentage soils, low ESP can have a significant effect. • The presence of high exchangeable Na can be counteracted by the presence of swelling clays, and an exchange complex co-dominated by exchangeable Ca and exchangeable Mg. This aids absorption of cations at depth, thereby reducing the likelihood of dispersion. • Salt is continually added to the soil by the effluent and problems may arise if the added salts accumulate to a concentration that is harmful to the soil structure. Under such conditions, good drainage is essential in order to allow continuous movement of water and salt through the profile. Therefore, for a site to be sustainable, it would have a maximum application rate of effluent. This would be dependent on subsurface characteristics and the surface area available for effluent disposal. • The dosing regime for effluent disposal can play a significant role in the prevention of salt accumulation in the case of poorly draining sites. Though intermittent dosing was not considered satisfactory for the removal of the clogging mat layer, it has positive attributes in the context of removal of accumulated salts in the soil.
Resumo:
Members of the World Trade Organisation (WTO) are obliged to implement the Agreement on Trade-related Intellectual Property Rights 1994 (TRIPS) which establishes minimum standards for the protection and enforcement of intellectual property rights. Almost two decades after TRIPS was adopted at the conclusion of the Uruguay Round of trade negotiations, it is widely accepted that intellectual property systems in developing and least-developed countries must be consistent with, and serve, their development needs and objectives. In adopting the Development Agenda in 2007, the World Intellectual Property Organisation (WIPO) emphasised the importance to developing and least-developed countries of being able to obtain access to knowledge and technology and to participate in collaborations and exchanges with research and scientific institutions in other countries. Access to knowledge, information and technology is crucial if creativity and innovation is to be fostered in developing and least-developed countries. It is particularly important that developing and least-developed countries give effect to their TRIPS obligations by implementing intellectual property systems and adopting intellectual property management practices that enable them to benefit from knowledge flows and support their engagement in international research and science collaborations. However, developing and least-developed countries did not participate in the deliberations leading to the adoption in 2004 by Organisation for Economic Co-operation and Development (OECD) member countries of the Ministerial Declaration on Access to Research Data from Public Funding, nor have they formulated policies on access to publicly funded research outputs such as those developed by the National Institutes of Health in the United States, the United Kingdom Research Councils or the Australian National Health and Medical Research Council. These issues are considered from the viewpoint of Malaysia, a developing country whose economy has grown strongly in recent years. Lacking an established policy covering access to the outputs of publicly funded research, data sharing and licensing practices continue to be fragmented. Obtaining access to research data requires arrangements to be negotiated with individual data owners and custodians. Given the potential for restrictions on access to impact negatively on scientific progress and development in Malaysia, measures are required to ensure that access to knowledge and research results is facilitated. This paper proposes a policy framework for Malaysia‘s public research universities that recognises intellectual property rights while enabling the open access to research data that is essential for innovation and development. It also considers how intellectual property rights in research data can be managed in order to give effect to the policy‘s open access objectives.
Resumo:
Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.