818 resultados para Cluster Ions
Resumo:
Divalent metal complexes of ligand 2-methoxybenzylidenepyruvate with Fe, Co, Ni, Cu and Zn as well as sodium salt were synthesized and investigated in the solid state. TG curves of these compounds were obtained with masses sample of 1 and 5mg under nitrogen atmosphere. Different heating rates were used to characterize and study these compounds from the kinetic point of view. The activation energy and pre-exponential factor were obtained applying the Wall-Flynn-Ozawa method to the TG curves. The obtained data were evaluated and the values of activation energy (Ea / kJ mol-1) was plotted in function of the conversion degree (α). The results show that due to mass sample, different activation energies were obtained. The results are discussed mainly taking into account the linear dependence between the activation energy and the pre exponential factor, where was verified the effect of kinetic compensation (KCE) and possible linear relations between the dehydrations steps of these compounds.
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
Crystallization is a purification method used to obtain crystalline product of a certain crystal size. It is one of the oldest industrial unit processes and commonly used in modern industry due to its good purification capability from rather impure solutions with reasonably low energy consumption. However, the process is extremely challenging to model and control because it involves inhomogeneous mixing and many simultaneous phenomena such as nucleation, crystal growth and agglomeration. All these phenomena are dependent on supersaturation, i.e. the difference between actual liquid phase concentration and solubility. Homogeneous mass and heat transfer in the crystallizer would greatly simplify modelling and control of crystallization processes, such conditions are, however, not the reality, especially in industrial scale processes. Consequently, the hydrodynamics of crystallizers, i.e. the combination of mixing, feed and product removal flows, and recycling of the suspension, needs to be thoroughly investigated. Understanding of hydrodynamics is important in crystallization, especially inlargerscale equipment where uniform flow conditions are difficult to attain. It is also important to understand different size scales of mixing; micro-, meso- and macromixing. Fast processes, like nucleation and chemical reactions, are typically highly dependent on micro- and mesomixing but macromixing, which equalizes the concentrations of all the species within the entire crystallizer, cannot be disregarded. This study investigates the influence of hydrodynamics on crystallization processes. Modelling of crystallizers with the mixed suspension mixed product removal (MSMPR) theory (ideal mixing), computational fluid dynamics (CFD), and a compartmental multiblock model is compared. The importance of proper verification of CFD and multiblock models is demonstrated. In addition, the influence of different hydrodynamic conditions on reactive crystallization process control is studied. Finally, the effect of extreme local supersaturation is studied using power ultrasound to initiate nucleation. The present work shows that mixing and chemical feeding conditions clearly affect induction time and cluster formation, nucleation, growth kinetics, and agglomeration. Consequently, the properties of crystalline end products, e.g. crystal size and crystal habit, can be influenced by management of mixing and feeding conditions. Impurities may have varying impacts on crystallization processes. As an example, manganese ions were shown to replace magnesium ions in the crystal lattice of magnesium sulphate heptahydrate, increasing the crystal growth rate significantly, whereas sodium ions showed no interaction at all. Modelling of continuous crystallization based on MSMPR theory showed that the model is feasible in a small laboratoryscale crystallizer, whereas in larger pilot- and industrial-scale crystallizers hydrodynamic effects should be taken into account. For that reason, CFD and multiblock modelling are shown to be effective tools for modelling crystallization with inhomogeneous mixing. The present work shows also that selection of the measurement point, or points in the case of multiprobe systems, is crucial when process analytical technology (PAT) is used to control larger scale crystallization. The thesis concludes by describing how control of local supersaturation by highly localized ultrasound was successfully applied to induce nucleation and to control polymorphism in reactive crystallization of L-glutamic acid.
Resumo:
Kirjallisuusarvostelu
Resumo:
This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.
Resumo:
Företag inom industri och handel väljer allt oftare att låta ett logistikföretag sköta stora delar av sina logistiska processer. Logistikföretagen i sin tur överlåter utförandet av enskilda tjänster, som t.ex. olika typer av transport, till olika samarbetspartners inom branschen. I avhandlingen studeras hur logistikföretag går till väga då de väljer vilka av deras samarbetspartners som ska engageras för att delta i utförandet av ett logistiktjänstepaket, en arbetsprocess som här kallas aktivering. Fokus ligger på aktiveringens innehåll och de faktorer som inverkar på hur den går till och vilka samarbetsparter som kommer att engageras. Arbetet bygger på nätverksansatsen för studier av företagsrelationer på industriella marknader. Aktiveringsprocessen uppfattas som en rätt ordinär, rutinmässig verksamhet i företaget, men den kan också förväntas inverka på hur företagets samarbetsnätverk utvecklas över tiden, genom att vissa relationer förstärks medan andra försvagas. I den empi riska undersökningen deltog 29 logistikföretag i Åboregionen som utgående från ett diskussionsunderlag fick berätta om hur de går till väga vid aktivering.
Resumo:
When doing researches on solute dynamics in porous medium, the knowledge of medium characteristics and percolating liquids, as well as of external factors is very important. An important external factor is temperature and, in this sense, our purpose was determining potassium and nitrate transport parameters for different values of temperature, in miscible displacement experiments. Evaluated parameters were retardation factor (R), diffusion/dispersion coefficient (D) and dispersivity, at ambient temperature (25 up to 28 ºC), 40 ºC and 50 ºC. Salts used were potassium nitrate and potassium chlorate, prepared in a solution made up of 5 ppm nitrate and 2.000 ppm potassium, with Red-Yellow Latosol porous medium. Temperature exhibited a positive influence upon porous medium solution and upon dispersion coefficient.
Resumo:
This study aimed to verify the influence of partial dehydration of "Niagara Rosada" grape clusters in physicochemical quality of the pre- fermentation must. In Brazil, during the winemaking process it is common to need to adjust the grape must when the physicochemical characteristics of the raw material are insufficient to produce wines in accordance with the Brazilian legislation for classification of beverages, which establishes the minimum alcohol content of 8.6 % for the beverage to be considered wine. Therefore, given that the reduction in the water content of grape berries allows the concentration of chemical compounds present in its composition, especially the concentration of total soluble solids, we proceeded with the treatments that were formed by the combination of two temperatures (T1-37.1ºC and T2-22.9 ºC) two air speeds (S1: 1.79 m s-1 and S2: 3.21 m s-1) and a control (T0) that has not gone through the dehydration treatment. Analysis of pH, Total Titratable Acidity (TTA) were performed in mEq L-1, Total Soluble Solids (TSS) in ºBrix, water content on a dry basis and Concentration of Phenolic Compounds (CPC) in mg of gallic acid per 100g of must. The average comparison test identified statistically significant modifications for the adaptation of must for winemaking purposes, having the treatment with 22.9 ºC and air speed of 1.79 m s-1 shown the largest increase in the concentration of total soluble solids, followed by the second best result for concentration of phenolic compounds.
Resumo:
Ett huvudmål med denna avhandling var att erhålla ny information om växelverkan mellan metalljoner i vattenfas och träbaserade material såsom olika pappersmassor, ved och bark. Material av gran, tall och björk har studerats. En ny känslig kolonnkromatografisk metod utvecklades för bestämning av affinitetsordningar för 17 olika metalljoner. Av dessa bands trevärt järn och de mycket toxiska tungmetallerna bly, koppar och kadmium starkast till de studerade materialen. Växelverkan i dessa tvåfas system sker som jonbyte, huvudsakligen via komplexbildning av metalljoner till funktionella grupper i den fasta fasen. Vattenfasens pH är den viktigaste parametern som bestämmer totala halten av metalljoner som binds till materialen. Resultatet i denna avhandling kan delvis betraktas som grundforskning. En ny kunskap om metalljoners förekomst och kemiska reaktioner i dessa system är även av stor ekonomisk och ekologisk, betydelse, när man strävar till allt mera slutna system i moderna massafabriker. Avhandlingen visar också att trädbark har stor potential för biosorption av tungmetaller t.ex. från avfallsvatten. Trädbark har nästan lika stor bindningskapacitet som dyra syntetiska jonbytare.
Resumo:
A tuberculose bovina (BTB) é uma enfermidade causada pela infecção pelo Mycobacterium bovis que acomete o homem e diversas espécies de mamíferos. A BTB tem grande importância por causar prejuízos econômicos nas regiões infectadas e por seu impacto na saúde pública. Foi realizado inquérito epidemiológico no Estado da Bahia, entre 2008 e 2010, com o objetivo de estimar a prevalência e conhecer a distribuição espaço temporal da enfermidade. O Estado foi estratificado em quatro regiões, cada uma com características epidemiológicas e demográficas homogêneas representativas de formas de produção pecuária. Um total de 18.810 cabeças com idade superior a 2 anos foi amostrado em 1350 propriedades. O teste cervical comparativo foi aplicado em cada animal selecionado, sendo considerados positivos os animais reagentes positivos ou duas vezes inconclusivos. Latitude e Longitude foram tomadas para cada propriedade amostrada com o auxilio do aparelho de Global Positioning System (GPS). O teste de Cuzick-and-Edwards e a análise de rastreio espacial (spatial scan statistic) foram utilizados para identificar qualquer agrupamento espacial de BTB. A prevalência de rebanho na Bahia, indicando a proporção de propriedades foco, foi de 1,6% (IC 95%: 1,0% - 2,69% por região). Nenhuma evidência significativa (P<0.05) de aglomeração espacial ou clustering foi detectada, possivelmente devido à baixa prevalência da doença. Estes resultados sugerem que a BTB tem baixa prevalência no estado da Bahia e que, nestas condições epidemiológicas, os focos encontrados não podem ser explicados por fatores espacialmente estruturados.