965 resultados para Clupeidae, juvenile, number per class of length
Resumo:
A Lagrangian based heuristic is proposed for many-to-many assignment problems taking into account capacity limits for task and agents. A modified Lagrangian bound studied earlier by the authors is presented and a greedy heuristic is then applied to get a feasible Lagrangian-based solution. The latter is also used to speed up the subgradient scheme to solve the modified Lagrangian dual problem. A numerical study is presented to demonstrate the efficiency of the proposed approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a different class of quantum-mechanical potentials. These are midway between the exactly solvable potentials and the quasiexactly ones. Their fundamental feature is that one can find the entire s-wave spectrum of a given potential, provided that some of its parameters are conveniently fixed. © 1993 The American Physical Society.
Resumo:
Recently a class of quantum-mechanical potentials was presented that is characterized by the fact that they are exactly solvable only when some of their parameters are fixed to a convenient value, so they were christened as conditionally exactly solvable potentials. Here we intend to expand this class by introducing examples in two dimensions. As a byproduct of our search, we found also another exactly solvable potential. © 1994 The American Physical Society.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Seven populations (six in culture and one sampled directly from nature) of the freshwater red algal families Batrachospermaceae, Lemaneaceae and Thoreaceae were examined, involving three species of Batrachospermum, two of Paralemanea and one of Thorea. All 'Chantransia' stages ultimately produced juvenile gametophytes. The production of juvenile gametophytes in the three populations of Batrachospermum was generally most abundant at 15°C and low irradiances (47-68 μmol photons m-2 s-1). The most abundant gametophyte development in the Paralemanea species was observed at 10°C and low or high irradiances (47-142 μmol photons m-2 s-1). Gametophyte production in Thoreaceae occurred at higher temperatures (20°C) and also at low irradiances. In species of the Batrachospermaceae and Lemaneaceae, the 'elimination cells' can be situated on the basal or suprabasal cell of the juvenile gametophyte, but the position is usually fixed in individual species. The presence and position of the elimination cells remain to be established in Thoreaceae. Our results corroborate a previous study suggesting that the position of elimination cells is such a constant feature that it is of potential diagnostic value at the generic or infrageneric (sectional or specific) level. The characteristics observed in the development of the juvenile gametophytes in species of Batrachospermaceae and Lemaneaceae essentially agreed with general descriptions in the previous studies. The characteristics of the Thoreaceae, with a distinctive developmental pattern of the juvenile gametophyte and the occurrence of two morphological types in the 'Chantransia' stage, support the proposal to elevate it to the ordinal level. Two remarkable observations in Batrachospermum species were the production of numerous juvenile gametophytes from filaments of the same plant of the 'Chantransia' stage and the formation of a system of rhizoidal filaments or cell agglomeration of the juvenile gametophytes, which produced new gametophytes. These two characteristics potentially increase the formation of additional gametophytes under favourable conditions.
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral (PI) controllers for a class of time delay systems. We extend results of the polynomial case to quasipolynomials using the property of interlacing in high frequencies of the class of time delay systems considered. A signature for the quasipolynomials in this class is derived and used in the proposed approach which yields the complete set of the stabilizing PI controllers.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral plus derivative (PID) controllers concerning a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. © 2005 IEEE.
Resumo:
PURPOSE
Resumo:
The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.