977 resultados para Chlorophyll a concentration
Resumo:
This document does NOT address the issue of chlorophyll-a quality control (either real-time or delayed mode). As a preliminary step towards that goal, this document seeks to ensure that all countries deploying floats equipped with chlorophyll-a sensors document the data and metadata related to these floats properly. We produced this document in response to action item 3 from the first Bio-Argo Data Management meeting in Hyderabad (November 12-13, 2012). If the recommendations contained herein are followed, we will end up with a more uniform set of chlorophyll-a data within the Bio-Argo data system, allowing users to begin analyzing not only their own chlorophyll-a data, but also those of others, in the true spirit of Argo data sharing.
Resumo:
The sea surface temperature (SST) and chlorophyll-a concentration (CHL-a) were analysed in the Gulf of Tadjourah from two set of 8-day composite satellite data, respectively from 2008 to 2012 and from 2005 to 2011. A singular spectrum analysis (SSA) shows that the annual cycle of SST is strong (74.3% of variance) and consists of warming (April-October) and cooling (November-March) of about 2.5C than the long-term average. The semi-annual cycle captures only 14.6% of temperature variance and emphasises the drop of SST during July-August. Similarly, the annual cycle of CHL-a (29.7% of variance) depicts high CHL-a from June to October and low concentration from November to May. In addition, the first spatial empirical orthogonal function (EOF) of SST (93% of variance) shows that the seasonal warming/cooling is in phase across the whole study area but the southeastern part always remaining warmer or cooler. In contrast to the SST, the first EOF of CHL-a (54.1% of variance) indicates the continental shelf in phase opposition with the offshore area in winter during which the CHL-a remains sequestrated in the coastal area particularly in the south-east and in the Ghoubet Al-Kharab Bay. Inversely during summer, higher CHL-a quantities appear in the offshore waters. In order to investigate processes generating these patterns, a multichannel spectrum analysis was applied to a set of oceanic (SST, CHL-a) and atmospheric parameters (wind speed, air temperature and air specific humidity). This analysis shows that the SST is well correlated to the atmospheric parameters at an annual scale. The windowed cross correlation indicates that this correlation is significant only from October to May. During this period, the warming was related to the solar heating of the surface water when the wind is low (April-May and October) while the cooling (November-March) was linked to the strong and cold North-East winds and to convective mixing. The summer drop in SST followed by a peak of CHL-a, seems strongly correlated to the upwelling. The second EOF modes of SST and CHL-a explain respectively 1.3% and 5% of the variance and show an east-west gradient during winter that is reversed during summer. This work showed that the seasonal signals have a wide spatial influence and dominate the variability of the SST and CHL-a while the east-west gradient are specific for the Gulf of Tadjourah and seem induced by the local wind modulated by the topography.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
Satellite-derived chlorophyll a concentration (chl a) maps show three regions with high chl a in the Bay of Bengal. First among these is close to the coast, particularly off river mouths, with high values coinciding with the season of peak discharge; second is in the southwestern bay during the northeast monsoon, which is forced by local Ekman pumping; and the third is to the east of Sri Lanka in response to the summer monsoon winds. Chlorophyll-rich water from the mouths of rivers flows either along the coast or in an offshore direction, up to several hundred kilometers, depending on the prevailing ocean current pattern. The Irrawady River plume flows toward offshore and then turns northwestward during October–December, but it flows along the coast into the Andaman Sea for the rest of the year. From the Ganga-Brahmaputra river mouth, chl a–rich water flows directly southward into the open bay during spring but along the Indian coast during summer and winter. Along the Indian coast, the flow of chl a–rich water is determined by the East India Coastal Current (EICC). Whenever the EICC meanders off the Indian coast, it leads to an offshore outbreak of chl a–rich water from the coastal region into open ocean. The EICC as well as open ocean circulation in the bay is made up of several eddies, and these eddies show relatively higher chl a. Eddies near the coast, however, can often have higher chl a because of advection from the coastal region rather than generation within the eddy itself. The bay experiences several cyclones in a year, most of them occurring during October–November. These cyclones cause a drop in the sea surface temperature, a dip in the sea level, and a local increase in chl a. The impact of a cyclone is weaker in the northern part of the bay because of stronger stratification compared to the southern parts.
Resumo:
The relationship between chlorophyll a and fractionation of sediment phosphorus, inorganic phosphate-solubilizing bacteria (IPB), and organic phosphate-mineralizing bacteria (OPB) was evaluated in a large Chinese shallow eutrophic lake (Lake Taihu) and its embayment (Wuli Bay). At the three study sites, the increase of chlorophyll a concentrations in April paralleled those of the iron bound phosphate accounting for major portion of sediment inorganic phosphate, and in June significantly higher OPB and IPB numbers (especially OPB) in sediment were main contributors to the peaks of chlorophyll a concentration. Even though IPB peaked from February to June, it should serve as an unimportant P source due to the irrelevancy with chlorophyll a and soluble reactive phosphorus (SRP). By contrast, at the other site in the embayment, the calcium-bound phosphate was predominant and solid, which was difficult to be released, and neither IPB nor OPB were detectable in the sediment, indicating weak potential for phosphorus release from the sediment, which was reflected in the small seasonal variation in SRP concentration in water column. Hence, the extents to which the three general mechanisms behind phosphate release from sediment (desorption of iron bound phosphate, solubilization by IPB and enzymatic hydrolysis by OPB) operated were different depending on seasons and sites in Lake Taihu, they may jointly drive phosphate release and accelerate the eutrophication processes.
Resumo:
We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll-a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003–04. Surface rates of carbon fixation ranged from <0.2-mmol C m−3 d−1 in the subtropical gyres to 0.2–0.5-mmol C m−3 d−1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll-a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50–70%) and chlorophyll-a (80–90%), nanoplankton (>2-μm) contributions to total carbon fixation (30–50%) were higher than to total chlorophyll-a (10–20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70–90%) and chlorophyll-a (70–90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2–3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll-a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.
Resumo:
A multi-sensor satellite approach based on ocean colour, sunglint and Synthetic Aperture Radar imagery is used to study the impact of interacting internal tidal (IT) waves on near-surface chlorophyll-a distribution, in the central Bay of Biscay. Satellite imagery was initially used to characterize the internal solitary wave (ISW) field in the study area, where the “local generation mechanism” was found to be associated with two distinct regions of enhanced barotropic tidal forcing. IT beams formed at the French shelf-break, and generated from critical bathymetry in the vicinities of one of these regions, were found to be consistent with “locally generated” ISWs. Representative case studies illustrate the existence of two different axes of IT propagation originating from the French shelf-break, which intersect close to 46°N, − 7°E, where strong IT interaction has been previously identified. Evidence of constructive interference between large IT waves is then presented and shown to be consistent with enhanced levels of chlorophyll-a concentration detected by means of ocean colour satellite sensors. Finally, the results obtained from satellite climatological mean chlorophyll-a concentration from late summer (i.e. September, when ITs and ISWs can meet ideal propagation conditions) suggest that elevated IT activity plays a significant role in phytoplankton vertical distribution, and therefore influences the late summer ecology in the central Bay of Biscay.