Seasonal Variations in Chlorophyll a Concentrations in Relation to Potentials of Sediment Phosphate Release by Different Mechanisms in a Large Chinese Shallow Eutrophic Lake (Lake Taihu)
Data(s) |
2009
|
---|---|
Resumo |
The relationship between chlorophyll a and fractionation of sediment phosphorus, inorganic phosphate-solubilizing bacteria (IPB), and organic phosphate-mineralizing bacteria (OPB) was evaluated in a large Chinese shallow eutrophic lake (Lake Taihu) and its embayment (Wuli Bay). At the three study sites, the increase of chlorophyll a concentrations in April paralleled those of the iron bound phosphate accounting for major portion of sediment inorganic phosphate, and in June significantly higher OPB and IPB numbers (especially OPB) in sediment were main contributors to the peaks of chlorophyll a concentration. Even though IPB peaked from February to June, it should serve as an unimportant P source due to the irrelevancy with chlorophyll a and soluble reactive phosphorus (SRP). By contrast, at the other site in the embayment, the calcium-bound phosphate was predominant and solid, which was difficult to be released, and neither IPB nor OPB were detectable in the sediment, indicating weak potential for phosphorus release from the sediment, which was reflected in the small seasonal variation in SRP concentration in water column. Hence, the extents to which the three general mechanisms behind phosphate release from sediment (desorption of iron bound phosphate, solubilization by IPB and enzymatic hydrolysis by OPB) operated were different depending on seasons and sites in Lake Taihu, they may jointly drive phosphate release and accelerate the eutrophication processes. The relationship between chlorophyll a and fractionation of sediment phosphorus, inorganic phosphate-solubilizing bacteria (IPB), and organic phosphate-mineralizing bacteria (OPB) was evaluated in a large Chinese shallow eutrophic lake (Lake Taihu) and its embayment (Wuli Bay). At the three study sites, the increase of chlorophyll a concentrations in April paralleled those of the iron bound phosphate accounting for major portion of sediment inorganic phosphate, and in June significantly higher OPB and IPB numbers (especially OPB) in sediment were main contributors to the peaks of chlorophyll a concentration. Even though IPB peaked from February to June, it should serve as an unimportant P source due to the irrelevancy with chlorophyll a and soluble reactive phosphorus (SRP). By contrast, at the other site in the embayment, the calcium-bound phosphate was predominant and solid, which was difficult to be released, and neither IPB nor OPB were detectable in the sediment, indicating weak potential for phosphorus release from the sediment, which was reflected in the small seasonal variation in SRP concentration in water column. Hence, the extents to which the three general mechanisms behind phosphate release from sediment (desorption of iron bound phosphate, solubilization by IPB and enzymatic hydrolysis by OPB) operated were different depending on seasons and sites in Lake Taihu, they may jointly drive phosphate release and accelerate the eutrophication processes. National Science Foundation of China [40730528]; Chinese Academy of Sciences [(KZCX2-YW-426]; State Key Laboratory of Freshwater Ecology and Biotechnology [2008FB012] |
Identificador | |
Idioma(s) |
英语 |
Fonte |
Song, Chunlei; Cao, Xiuyun; Liu, Yunbing; Zhou, Yiyong.Seasonal Variations in Chlorophyll a Concentrations in Relation to Potentials of Sediment Phosphate Release by Different Mechanisms in a Large Chinese Shallow Eutrophic Lake (Lake Taihu),GEOMICROBIOLOGY JOURNAL,2009,26(7):508-515 |
Palavras-Chave | #Environmental Sciences; Geosciences #Multidisciplinary #chlorophyll a #inorganic phosphate-solubilizing bacteria #iron-bound phosphate #Lake Taihu #organic phosphate-mineralizing bacteria |
Tipo |
期刊论文 |