739 resultados para Cheese whey
Resumo:
The aim of this paper is to analyse the economic efficiency of members of protected designations of origin (PDO). For the first time we analyse the value of PDO labels from the point of view of economic efficiency. The central hypothesis is that a PDO has a positive impact on the economic efficiency of its member companies and that this is because a PDO label is a collective reputation indicator that foments efficient investment in quality in terms of member returns. The methodology applied to test this hypothesis is based on data envelopment analysis to estimate economic efficiency, and econometric models to explain company efficiency through both the PDO label, as an indicator of collective reputation, and the characteristics of the company. The results obtained in the experience goods of wine and cheese in Spain show that PDO labels have a positive impact on economic efficiency. Additionally, the age and size of the company have a positive effect while the wage level of the company has a different influence on efficiency depending on the sector considered. Overall, the results reveal the importance of PDOs in industries in which the signal of reputation is not only reliant on the individual brands.
Resumo:
Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.
Resumo:
Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-relaxation temperatures of amorphous lactose at various relaxation times were affected by the presence of water and WPI. The α-relaxation-derived strength parameter (S) of amorphous lactose decreased with aw up to 0.44 aw but the presence of WPI increased S. The linear relationship for aw(cr) and S for lactose/WPI mixtures was also established with R2 > 0.98. Therefore, DDI offers another structural investigation of water sorption-related crystallization as governed by aw(cr), and S may be used to describe real time effects of structural relaxations in noncrystalline multicomponent solids.
Resumo:
2014
Resumo:
The objective of this work was to evaluate the levels of sodium monensin on lactating cows and their effects on productive performance and milk protein fraction composition. It was used 12 Holstein cows, distributed in four balanced 3 × 3 Latin squares, and fed three diets: one control without monensin, and two diets with monensin at the levels of 24 or 48 mg/kg DM added to the concentrate. Milk production was daily measured throughout the entire experimental period. The samples used for analysis of milk composition were collected on two alternated days from the two daily milking. Non-protein nitrogen, total nitrogen and non-casein nitrogen contents were directly evaluated in the milk, and casein, whey protein and true protein contents were indirectly determined. The use of monensin in the rations reduced dry matter and nutrient intake, especially when diet with 48 mg/kg of dry matter was given. The ration with 24 mg/kg of DM increased milk production, with or without correction, and also fat and lactose yield, and it improved productive efficiency. The levels of monensin in the ratios did not influence contents of milk crude protein, non-protein nitrogen, non-casein nitrogen, true protein, casein, casein/true protein ratio, whey protein, and of all those fractions expressed as percentage of crude protein. The utilization of monensin in the ratio at the dose of 24 mg/kg of DM influences positively the productive performance of lactating cows, and it does not influence the composition of milk protein fractions.
Resumo:
This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.
Effects of medium supplementation and pH control on lactic acid production from brewer`s spent grain
Resumo:
A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell-free supernatants containing bacteriocins, added to 3-h-old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto-aggregation was strain-specific, and values ranged from 7 center dot 2% for ET35 to 12 center dot 1% for ET05. Various degrees of co-aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco-2 cells was within the range reported for Lactobacillus rhamnosus GG, a well-known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61 center dot 9-64 center dot 6%), Lact. fermentum (78 center dot 9%), Lact. delbrueckii (43 center dot 7%) and Ped. acidilactici (51 center dot 3%), which are higher than the one recorded for Lact. rhamnosus GG (53 center dot 3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain-dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco-2 cells was within the range reported for Lact. rhamnosus GG, a well-known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.
Resumo:
The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on Lactobacillus acidophilus La-5 viability and resistance to gastric and enteric simulated conditions in synbiotic guava mousses effects were investigated. Refrigerated mousses supplemented with WPC presented the best probiotic viability. ranging from 7.77 to 6.24 log cfu/g during 28 days of storage. The highest probiotic populations, above 7.45 log cfu/g, were observed for all frozen mousses during 112 days of storage. Decreased L acidophilus survival during the in vitro gastrointestinal simulation was observed both for refrigerated and frozen mousses. Nonetheless, for the refrigerated mousses, the addition of inulin enhanced the probiotic survival during the in vitro assays in the first week of storage. L acidophilus survival in simulated gastrointestinal fluids was also improved through freezing. The frozen storage may be used to provide increased shelf-life for synbiotic guava mousses. Even though the protective effect of inulin and WPC on the probiotic microorganism tested was shown to be more specific for the refrigerated products, the partial replacement of milk fat by these ingredients may also help, as it improves the nutritional value of mousses in both storage conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of probiotic cultures on sensory performance of coconut flan during storage at 5 degrees C and the viability of these micro organisms for up to 28 days were investigated. Sensory analyses of the product were performed after 7, 14 and 21 days of storage. Coconut flans were produced with no addition of cultures (T1, control), or supplemented with Bifidobacterium lactis (T2), Lactobacillus paracasei (T3) and B. lactis + L. paracasei (T4). Populations of L. paracasei and B. lactis as single or in co-culture remained above 7 log CFU g(-1) during the entire storage period. Viability of L. paracasei was higher for T3. All products were well accepted and no significant differences (P > 0.05) were detected between the coconut flans studied. The addition of L. paracasei and B. lactis to coconut flan resulted in its having great potential as a functional food, which has high sensory acceptability.
Resumo:
BACKGROUND: This study evaluated the effect of a potentially probiotic bacteria (Lactobacillus paracasei subsp. paracasei LBC 82), added solely or together with the prebiotic ingredient inulin on instrumental texture attributes and sensory properties of a functional chocolate mousse during storage at 4 +/- 1 degrees C for up to 28 days. RESULTS: The addition of Lactobacillus paracasei resulted in a firmer and more adhesive chocolate mousse. This effect was intensified with the presence of inulin in the synbiotic formulation (5.24 N and -0.956 N, respectively, for firmness and adhesiveness after 28 days of storage) (P < 0.05). L. paracasei population did not vary (P > 0.05) during storage (always between 7.27 and 7.35 log cfu g(-1)), both for the probiotic and the synbiotic mousses. Synbiotic mousse differed from control and probiotic mousses during storage with respect to the color attribute. Moreover, both probiotic and synbiotic mousses presented taste, aroma and texture perceptions which were different from one another and from the control mousse after 14 and 21 days of storage. CONCLUSION: The use of inulin, together with the potentially probiotic strain of Lactobacillus paracasei subsp. paracasei, is advantageous, conferring potentially symbiotic potential to the chocolate mousse, as well as favorable texture and sensory properties. (c) 2008 Society of Chemical Industry.
Resumo:
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Enterococci can be used in the food industry as starter or probiotic cultures. However, enterococci are also implicated in severe multi-resistant nosocomial infections. In this study, the prevalence of enterococci in selected Brazilian foodstuffs (raw and pasteurized milk, meat products, cheeses and vegetables) was evaluated. Phenotypic and PCR protocols were used for species identification. Tests for production of gelatinase, haemolysin, bacteriocin and bile salt hydrolysis were done with all enterococci isolates, whereas molecular determination of virulence markers (genes esp, gel, ace, as, efaA, hyl and cylA) and antibiotic resistance was checked only for Enterococcus faecium and Enterococcus faecalis isolates. The antibiotic-resistant isolates were assayed for biofilm formation and adhesion to mammalian cells. From the 120 food samples analyzed, 52.5% were positive for enterococci, meat and cheese being the most contaminated. E. faecium was the predominant species, followed by E. faecalis, E. casseliflavus and Enterococcus gallinarum. Phenotypic tests indicated that 67.7% of isolates hydrolyzed bile salts, 15.2% produced bacteriocin, 12.0% were beta-hemolytic and 18.2% produced gelatinase. Antibiotic resistance (gentamicin, tetracycline and erythromycin) and genes encoding for virulence traits were more frequent in E. faecalis than in E. faecium. Three E. faecium isolates were resistant to vancomycin. Among antibiotic-resistant isolates, 72.4% of E. faecalis were able to form biofilm and 13.8% to adhere to Caco-2 cells. Antibiotic-resistant E. faecalis and E. faecium isolates were grouped by RAPD-PCR and a scattered distribution was noted, indicating that resistance was not related to a particular clone. The spread of virulence/resistance traits in isolates of the two species and different RAPD-types suggest the pathogenic potential of both species. By contrast, the recovery of bacteriocinogenic E. faecium isolates with no virulence traits suggests their potential for biotechnological applications. In conclusion, our results showed that enterococci from Brazilian foods present important dualist aspects for food safety. (C) 2008 Elsevier Ltd. All rights reserved.