832 resultados para CONDUCTING SALTS
Resumo:
The work described in this thesis has been divided into seven sections. The first section involves the preparation of N'-acyl-N'-arylN- benzothiohydrazides by the acylation of N'-aryl-N-benzothiohydrazides and is followed by a brief discussion of their possible conformation in solution. The second section deals with the preparation of 1,3,4-thiadiazolium salts by the action of perchloric acid/acetic anhydride on N'-acylN'- aryl-N-benzothiohydrazides and also by the reaction of N'-arylN- benzothiohydrazides with nitriles in an acidic medium. The preparation of 2-methylthio-I,3,4-thiadiazolium methosulfate by methylating the corresponding thione is also described. The third section deals with the reaction of 2-phenyl- and 2-methyl-I,3,4-thiadiazolium salts with alcohols in the presence of base. The stability and spectra of these compounds are discussed. Treatment of the 2-methyl-I,3,4-thiadiazolium salt with base was found to give rise to a dimeric anhydrobase and evidence supporting its structure is given. The anhydrobase could be trapped by a variety of acylating and thioacylating agents before dimerization occurred. In the fourth section, the reaction of N'-acyl-N'-aryl-N-benzothiohydrazides with a variety of acid anhydrides is described. These compounds were found to be identical with those obtained by acylating the anhydrobase. The mass spectral fragmentation of these compounds is described and the anomolous product obtained upon thiobenzoylation of 3-methyl-l-phenyl-pyrazal-5-one is also discussed. The fifth section deals with thioacyl derivatives of the anhydrobase which were prepared by the action of phosphorus pentasulfide upon the oxygen analogues and also obtained as the major product of the reaction of thioacetic acid with compounds related to N'-aryl-N-benzothiohydrazides. The mass spectra and p.m.r. spectra of these compounds are discussed. In the sixth section, the reaction of the 2-methylthio-l,3,4- thiadiazolium salt with active methylene compounds to give acyl and diacyl derivatives of the anhydrobase is described. Some aspects of these compounds are discussed. The seventh section describes the synthesis of ncyanine~' type dyes incorporating the l,3,4-thiadiazole ring and their spectra are briefly discussed.
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.
Resumo:
The preparation and characterization of two families of building blocks for molecule-based magnetic and conducting materials are described in three projects. In the first project the synthesis and characterization of three bis-imine ligands LI - L3 is reported. Coordination of LI to a series of metal salts afforded the five novel coordination complexes Sn(L4)C4 (I), [Mn(L4)(u-CI)(CI)(EtOH)h (II), [CU(L4)(u-sal) h(CI04)2 (sal = salicylaldehyde anion) (III), [Fe(Ls)2]CI (IV) and [Fe(LI)h(u-O) (V). All complexes have been structurally and magnetically characterized. X-ray diffraction studies revealed that, upon coordination to Lewis acidic metal salts, the imine bonds of LI are susceptible to nucleophilic attack. As a consequence, the coordination complexes (I) - (IV) contain either the cyclised ligand L4 or hydrolysed ligand Ls. In contrast, the dimeric Fe3+ complex (V) comprises two intact ligand LI molecules. In. this complex, the ligand chelates two Fe(III) centres in a bis-bidentate manner through the lone pairs of a phenoxy oxygen and an imine nitrogen atom. Magnetic studies of complexes (II-V) indicate that the dominant interactions between neighbouring metal centres in all of the complexes are antiferromagnetic. In the second project the synthesis and characterization two families of TTF donors, namely the cyano aryl compounds (VI) - (XI) and the his-aryl TTF derivatives (XII) - (XIV) are reported. The crystal structures of compounds (VI), (VII), (IX) and (XII) exhibit regular stacks comprising of neutral donors. The UV -Vis spectra of compounds (VI) - (XIV) present an leT band, indicative of the transfer of electron density from the TTF donors to the aryl acceptor molecules. Chemical oxidation of donors (VI), (VII), (IX) and (XII) with iodine afforded a series of CT salts that where possible have been characterized by single crystal X -ray diffraction. Structural studies showed that the radical cations in these salts are organized in stacks comprising of dimers of oxidized TTF donors. All four salts behave as semiconductors, displaying room temperature conductivities ranging from 1.852 x 10-7 to 9.620 X 10-3 Scm-I. A second series of CT salts were successfully prepared via the technique of electrocrystallization. Following this methodology, single crystals of two CT salts were obtained. The single crystal X-ray structures of both salts are isostructural, displaying stacks formed by trimers of oxidized donors. Variable temperature conductivity measurements carried out on this series of CT salts reveal they also are semiconductors with conductivities ranging from 2.94 x 10-7 to 1.960 X 10-3 S em-I at room temperature. In the third project the synthesis and characterization of a series of MII(hfac)2 coordination complexes of donor ligand (XII) where M2+ = Co2+, Cu2+, Ni2+ and Zn2+ are reported. These complexes crystallize in a head-to-tail arrangement of TTF donor and bipyridine moieties, placing the metal centres and hfac ligands are located outside the stacks. Magnetic studies of the complexes (XV) - (XVIII) indicate that the bulky hfac ligands prevent neighbouring metal centres from assembling in close proximity, and thus they are magnetically isolated.
Resumo:
Work in the area of molecule-based magnetic and/or conducting materials is presented in two projects. The first project describes the use of 4,4’-bipyridine as a scaffold for the preparation of a new family of tetracarboxamide ligands. Four new ligands I-III have been prepared and characterized and the coordination chemistry of these ligands is presented. This project was then extended to exploit 4,4’-bipyridine as a covalent linker between two N3O2 macrocyles. In this respect, three dimeric macrocycles have been prepared IV-VI. Substitution of the labile axial ligands of the Co(II) complex IV by [Fe(CN)6]4- afforded the self-assembly of the 1-D polymeric chain {[Co(N3O2)H2O]2Fe(CN)6}n•3H2O that has been structurally and magnetically characterized. Magnetic studies on the Fe(II) complexes V and VI indicate that they undergo incomplete spin crossover transitions in the solid state. Strategies for the preparation of chiral spin crossover N3O2 macrocycles are discussed and the synthesis of the novel chiral Fe(II) macrocyclic complex VII is reported. Magnetic susceptibility and Mössbauer studies reveal that this complex undergoes a gradual spin crossover in the solid state with no thermal hysteresis. Variable temperature X-ray diffraction studies on single crystals of VII reveal interesting structural changes in the coordination geometry of the macrocycle accompanying its SCO transition. The second project reports the synthesis and characterization of a new family of tetrathiafulvalene derivatives VIII – XII, where a heterocyclic chelating ligand is appended to a TTF donor via an imine linker. The coordination chemistries of these ligands with M(hfac)2.H2O (M( = Co, Ni, Mn, Cu) have been explored and the structural and magnetic properties of these complexes are described.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.
Resumo:
Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.
Resumo:
There is an increasing demand for renewable energies due to the limited availability of fossil and nuclear fuels and due to growing environmental problems. Photovoltaic (PV) energy conversion has the potential to contribute significantly to the electrical energy generation in the future. Currently, the cost for photovoltaic systems is one of the main obstacles preventing production and application on a large scale. The photovoltaic research is now focused on the development of materials that will allow mass production without compromising on the conversion efficiencies. Among important selection criteria of PV material and in particular for thin films, are a suitable band gap, high absorption coefficient and reproducible deposition processes capable of large-volume and low cost production. The chalcopyrite semiconductor thin films such as Copper indium selenide and Copper indium sulphide are the materials that are being intensively investigated for lowering the cost of solar cells. Conversion efficiencies of 19 % have been reported for laboratory scale solar cell based on CuInSe2 and its alloys. The main objective of this thesis work is to optimise the growth conditions of materials suitable for the fabrication of solar cell, employing cost effective techniques. A typical heterojunction thin film solar cell consists of an absorber layer, buffer layer and transparent conducting contacts. The most appropriate techniques have been used for depositing these different layers, viz; chemical bath deposition for the window layer, flash evaporation and two-stage process for the absorber layer, and RF magnetron sputtering for the transparent conducting layer. Low cost experimental setups were fabricated for selenisation and sulphurisation experiments, and the magnetron gun for the RF sputtering was indigenously fabricated. The films thus grown were characterised using different tools. A powder X-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive X-ray analysis (EDX) and scanning electron microscopy i (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UV-Vis-NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using the two probe and four probe electrical measurements. Nature of conductivity of the films was determined by thermoprobe and thermopower measurements. The deposition conditions and the process parameters were optimised based on these characterisations.
Resumo:
A combined experimental and theoretical study of the absorption spectra of a group of closely related pyrylium perchlorates 1-11 are presented. Minor changes in the position of the substituents lead to drastic changes in the absorption spectra in this series of compounds. We have attempted to explain the observed changes using the x,y-band notation developed by Balaban and co-workers. Absorption spectra of all compounds are compared with results from time-dependent density functional theory (TDDFT) and Zerner’s intermediate neglect of differential overlap (ZINDO/S) level calculations. Results of the calculations are in good agreement with experimental observations and an interesting correlation between Balaban’s notations and the MO transitions are obtained for simple derivatives. It is suggested that for more complex systems such as R- and â-naphthyl substituted systems, the empirical method is not appropriate.
Resumo:
Highly conductive and transparent thin films of amorphous zinc indium tin oxide are prepared at room temperature by co-sputtering of zinc 10 oxide and indium tin oxide. Cationic contents in the films are varied by adjusting the power to the sputtering targets. Optical transmission study of 11 films showed an average transmission greater than 85% across the visible region. Maximum conductivity of 6×102 S cm−1 is obtained for Zn/In/ 12 Sn atomic ratio 0.4/0.4/0.2 in the film. Hall mobility strongly depends on carrier concentration and maximum mobility obtained is 18 cm2 V−1 s−1 13 at a carrier concentration of 2.1×1020 cm−3. Optical band gap of films varied from 3.44 eV to 3 eV with the increase of zinc content in the film 14 while the refractive index of the films at 600 nm is about 2.0.
Resumo:
Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications .
Resumo:
Microwave properties of conductive polymers is crucial because of their wide areas of applications such as coating in reflector antennas, coating in electronic equipments, firequenry selective .surfaces, EMI materials, satellite communication links, microchip antennas, and medical applications. This work involves a comparative study of dielectric properties of selected conducting polymers such as polyaniline. poly(3,4-eth),lenedio.syt2iophene), polvthiophene, polvpvrrole. and pohparaphenylene diazomethine (PPDA) in microwave and DC,fields. The inicrowave properties such as dielectric constant, dielectric loss. absorption coefficient, heating coefficient, skin depth, and conductivity in the microwave frequency (S hand), and DC fields were compared. PEDOT and polccuiiline were found to exhibit excellent properties in DC field and microwave frequencies, which make thein potential materials in many of the alorenientioned applications