934 resultados para Brain image classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the angle of illumination incident upon a 3D surface texture can significantly alter its appearance, implying variations in the image texture. These texture variations produce displacements of class members in the feature space, increasing the failure rates of texture classifiers. To avoid this problem, a model-based texture recognition system which classifies textures seen from different distances and under different illumination directions is presented in this paper. The system works on the basis of a surface model obtained by means of 4-source colour photometric stereo, used to generate 2D image textures under different illumination directions. The recognition system combines coocurrence matrices for feature extraction with a Nearest Neighbour classifier. Moreover, the recognition allows one to guess the approximate direction of the illumination used to capture the test image

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Images of normal brains

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los gliomas malignos representan una de las formas más agresivas de los tumores del sistema nervioso central (SNC). De acuerdo con la clasificación de los tumores cerebrales de la Organización Mundial de la Salud (OMS), los astrocitomas han sido categorizados en cuatro grados, determinados por la patología subyacente. Es así como los gliomas malignos (o de alto grado) incluyen el glioma anaplásico (grado III) así como el glioblastoma multiforme (GBM, grado IV),estos últimos los más agresivos con el peor pronóstico (1). El manejo terapéutico de los tumores del SNC se basa en la cirugía, la radioterapia y la quimioterapia, dependiendo de las características del tumor, el estadio clínico y la edad (2),(3), sin embargo ninguno de los tratamientos estándar es completamente seguro y compatible con una calidad de vida aceptable (3), (4). En general, la quimioterapia es la primera opción en los tumores diseminados, como el glioblastoma invasivo y el meduloblastoma de alto riesgo o con metástasis múltiple, pero el pronóstico en estos pacientes es muy pobre (2),(3). Solamente nuevas terapias dirigidas (2) como las terapias anti-angiogénicas (4); o terapias génicas muestran un beneficio real en grupos limitados de pacientes con defectos moleculares específicos conocidos (4). De este modo, se hace necesario el desarrollo de nuevas terapias farmacológicas para atacar los tumores cerebrales. Frente a las terapias los gliomas malignos son con frecuencia quimioresistentes, y esta resistencia parece depender de al menos dos mecanismos: en primer lugar, la pobre penetración de muchas drogas anticáncer a través de la barrera hematoencefálica (BBB: Blood Brain Barrier), la barrera del fluido sangre-cerebroespinal (BCSFB: Blood-cerebrospinal fluid barrier) y la barrera sangre-tumor (BTB: blood-tumor barrier). Dicha resistencia se debe a la interacción de la droga con varios transportadores o bombas de eflujo de droga ABC (ABC: ATP-binding cassette) que se sobre expresan en las células endoteliales o epiteliales de estas barreras. En segundo lugar, estos transportadores de eflujo de drogas ABC propios de las células tumorales confieren un fenotipo conocido como resistencia a multidrogas (MDR: multidrug resistance), el cual es característico de varios tumores sólidos. Este fenotipo también está presente en los tumores del SNC y su papel en gliomas es objeto de investigación (5). Por consiguiente el suministro de medicamentos a través de la BBB es uno de los problemas vitales en los tratamientos de terapia dirigida. Estudios recientes han demostrado que algunas moléculas pequeñas utilizadas en estas terapias son sustratos de la glicoproteína P (Pgp: P-gycoprotein), así como también de otras bombas de eflujo como las proteínas relacionadas con la resistencia a multidrogas (MRPs: multidrug resistance-related proteins (MRPs) o la proteína relacionada con cáncer de seno (BCRP: breast-cancer resistance related protein)) que no permiten que las drogas de este tipo alcancen el tumor (1). Un sustrato de Pgp y BCRP es la DOXOrubicina (DOXO), un fármaco utilizado en la terapia anti cáncer, el cual es muy eficaz para atacar las células del tumor cerebral in vitro, pero con un uso clínico limitado por la poca entrega a través de la barrera hematoencefálica (BBB) y por la resistencia propia de los tumores. Por otra parte las células de BBB y las células del tumor cerebral tienen también proteínas superficiales, como el receptor de la lipoproteína de baja densidad (LDLR), que podría utilizarse como blanco terapéutico en BBB y tumores cerebrales. Es asi como la importancia de este estudio se basa en la generación de estrategias terapéuticas que promuevan el paso de las drogas a través de la barrera hematoencefalica y tumoral, y a su vez, se reconozcan mecanismos celulares que induzcan el incremento en la expresión de los transportadores ABC, de manera que puedan ser utilizados como blancos terapéuticos.Este estudio demostró que el uso de una nueva estrategia basada en el “Caballo de Troya”, donde se combina la droga DOXOrubicina, la cual es introducida dentro de un liposoma, salvaguarda la droga de manera que se evita su reconocimiento por parte de los transportadores ABC tanto de la BBB como de las células del tumor. La construcción del liposoma permitió utilizar el receptor LDLR de las células asegurando la entrada a través de la BBB y hacia las células tumorales a través de un proceso de endocitosis. Este mecanismo fue asociado al uso de estatinas o drogas anticolesterol las cuales favorecieron la expresión de LDLR y disminuyeron la actividad de los transportadores ABC por nitración de los mismos, incrementando la eficiencia de nuestro Caballo de Troya. Por consiguiente demostramos que el uso de una nueva estrategia o formulación denominada ApolipoDOXO más el uso de estatinas favorece la administración de fármacos a través de la BBB, venciendo la resistencia del tumor y reduciendo los efectos colaterales dosis dependiente de la DOXOrubicina. Además esta estrategia del "Caballo de Troya", es un nuevo enfoque terapéutico que puede ser considerado como una nueva estrategia para aumentar la eficacia de diferentes fármacos en varios tumores cerebrales y garantiza una alta eficiencia incluso en un medio hipóxico,característico de las células cancerosas, donde la expresión del transportador Pgp se vió aumentada. Teniendo en cuenta la relación entre algunas vías de señalización reconocidas como moduladores de la actividad de Pgp, este estudio presenta no solo la estrategia del Caballo de Troya, sino también otra propuesta terapéutica relacionada con el uso de Temozolomide más DOXOrubicina. Esta estrategia demostró que el temozolomide logra penetrar la BBB por que interviene en la via de señalización de la Wnt/GSK3/β-catenina, la cual modula la expresión del transportador Pgp. Se demostró que el TMZ disminuye la proteína y el mRNA de Wnt3 permitiendo plantear la hipótesis de que la droga al disminuir la transcripción del gen Wnt3 en células de BBB, incrementa la activación de la vía fosforilando la β-catenina y conduciendo a disminuir la β-catenina nuclear y por tanto su unión al promotor del gen mdr1. Con base en los resultados este estudio permitió el reconocimiento de tres mecanismos básicos relacionados con la expresión de los transportadores ABC y asociados a las estrategias empleadas: el primero fue el uso de las estatinas, el cual condujo a la nitración de los transportadores disminuyendo su actividad por la via del factor de transcripción NFκB; el segundo a partir del uso del temozolomide, el cual metila el gen de Wnt3 reduciendo la actividad de la via de señalización de la la β-catenina, disminuyendo la expresión del transportador Pgp. El tercero consistió en la determinación de la relación entre el eje RhoA/RhoA quinasa como un modulador de la via (no canónica) GSK3/β-catenina. Se demostró que la proteína quinasa RhoA promovió la activación de la proteína PTB1, la cual al fosforilar a GSK3 indujo la fosforilación de la β-catenina, lo cual dio lugar a su destrucción por el proteosoma, evitando su unión al promotor del gen mdr1 y por tanto reduciendo su expresión. En conclusión las estrategias propuestas en este trabajo incrementaron la citotoxicidad de las células tumorales al aumentar la permeabilidad no solo de la barrera hematoencefálica, sino también de la propia barrera tumoral. Igualmente, la estrategia del “Caballo de Troya” podría ser útil para la terapia de otras enfermedades asociadas al sistema nervioso central. Por otra parte estos estudios indican que el reconocimiento de mecanismos asociados a la expresión de los transportadores ABC podría constituir una herramienta clave en el desarrollo de nuevas terapias anticáncer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.