907 resultados para Bivariate Normal Distribution
Resumo:
Os cães, por fatores diversos, acabam por apresentar dentes fraturados com ou sem exposição de polpa. Estas fraturas basicamente são identificadas como fraturas recuperáveis não complicadas, recuperáveis complicadas ou irrecuperáveis. As fraturas recuperáveis (localizadas apenas no esmalte e dentina) são tratadas com dentística restauradora. As recuperáveis complicadas (com lesões em esmalte, dentina e exposição do canal radicular) passam por tratamento endodôntico, podendo ser seguidas de restaurações metálicas. Os dentes mais comumente acometidos são os dentes caninos, superiores ou inferiores. Este trabalho em dentes artificiais simulando considerável destruição de sua porção coronal objetivou testar, após a adaptação da restauração metálica fundida, a resistência às fraturas no dente canino. Os dentes artificiais foram padronizados com uma técnica de replicação de raízes artificiais em molde de resina acrílica quimicamente ativada. Oitenta réplicas iguais de resina composta fotopolimerizável, padronizadas em tamanho e forma, foram construídas a partir desta técnica. Antes da reconstrução protética, aplicou-se o tratamento endodôntico, desobturação, preparo do canal radicular e moldagem. Proteticamente, um pino intrarradicular reto e outro curvo, ambos com núcleo para sustentar a coroa metálica fundida foram cimentados na porção coronal de cada raiz-réplica. Os núcleos e coroa metálica foram ambos ferulados ou estojados. Avaliou-se os dois tipos de restauração com pino intrarradicular curvos ou retos cimentados com cimento de fosfato de zinco ou resinoso para identificar o melhor conjunto restaurador. Os testes de resistência biomecânica de 80 raízes-réplicas foram divididos em 4 grupos com 20 corpos de prova para cada um dos grupos. Grupo 1: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento resinoso. Grupo 2: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento de fosfato de zinco. Grupo 3: das raízes-réplicas com pino intrarradicular reto cimentados com cimento resinoso. Grupo 4: das raízes-réplicas com pino intrarradicular reto cimentados com cimento de fosfato de zinco. Estes grupos foram submetidos a teste de força com pré-carga de 1,5 N, com velocidade de avanço constante de 0,05 mm por minuto em ponto pré- determinado (mésio-lateral vestibularizada) até ocorrência de fratura do conjunto ou parte dele em uma Máquina Universal Kratos. Com a avaliação biomecânica e estudo estatístico de Kruskall-Wallis, identificou-se que os dados obtidos não seguiram distribuição normal. Esta diferença mostrou-se com o p<0,05 na interpretação do teste. No caso de dados não paramétricos o post-hoc do Kruskal-Wallis foi o teste de U de Mann-Withney. Paralelamente, um estudo com análise de elementos finitos comparou os resultados obtidos. Não houve diferença significativa sobre o tipo de cimento utilizado ou que favorecesse o uso do pino reto ou do pino curvo, recaindo a escolha para o operador decidir de acordo com a melhor indicação para cada caso clínico
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
Different types of numerical data can be collected in a scientific investigation and the choice of statistical analysis will often depend on the distribution of the data. A basic distinction between variables is whether they are ‘parametric’ or ‘non-parametric’. When a variable is parametric, the data come from a symmetrically shaped distribution known as the ‘Gaussian’ or ‘normal distribution’ whereas non-parametric variables may have a distribution which deviates markedly in shape from normal. This article describes several aspects of the problem of non-normality including: (1) how to test for two common types of deviation from a normal distribution, viz., ‘skew’ and ‘kurtosis’, (2) how to fit the normal distribution to a sample of data, (3) the transformation of non-normally distributed data and scores, and (4) commonly used ‘non-parametric’ statistics which can be used in a variety of circumstances.
Resumo:
This article explains first, the reasons why a knowledge of statistics is necessary and describes the role that statistics plays in an experimental investigation. Second, the normal distribution is introduced which describes the natural variability shown by many measurements in optometry and vision sciences. Third, the application of the normal distribution to some common statistical problems including how to determine whether an individual observation is a typical member of a population and how to determine the confidence interval for a sample mean is described.
Resumo:
In this second article, statistical ideas are extended to the problem of testing whether there is a true difference between two samples of measurements. First, it will be shown that the difference between the means of two samples comes from a population of such differences which is normally distributed. Second, the 't' distribution, one of the most important in statistics, will be applied to a test of the difference between two means using a simple data set drawn from a clinical experiment in optometry. Third, in making a t-test, a statistical judgement is made as to whether there is a significant difference between the means of two samples. Before the widespread use of statistical software, this judgement was made with reference to a statistical table. Even if such tables are not used, it is useful to understand their logical structure and how to use them. Finally, the analysis of data, which are known to depart significantly from the normal distribution, will be described.
Resumo:
This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.
Resumo:
Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within-site growth variation, radial growth rates (RaGRs) of thalli of the fast-growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S-facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image-J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mmyr-1 and R. geographicum from 0.10 to 1.50 mmyr-1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry. © 2014 Swedish Society for Anthropology and Geography.
Resumo:
Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.