996 resultados para Biochemical variation
Resumo:
This dissertation is an onomastic study of variation in women s name phrases in official documents in Finland during the period 1780−1930. The aim is to discuss from a socio-onomastic perspective both the changeover from patronymics to inherited family names and the use of surnames after marriage (i.e. whether women adopted their husbands family names or retained their maiden names), before new laws in this area entered into force in Finland in the early 20th century. In 1920, a law on family names that required fixed names put an end to the use of the patronymic as a person s only surname. After 1929, it was no longer possible for a married woman to retain her maiden name. Methodologically, to explain this development from a socio-onomastic perspective, I have based my study on a syntactic-semantic analysis of the actual name phrases. To be able to demonstrate the extensive material, I have elaborated a scheme to divide the 115 different types of name phrases into 13 main categories. The analysis of the material for Helsinki is based on frequency calculations of the different types of name phrases every thirtieth year, as well as on describing variation in the structure and semantic content of the name phrases, e.g. social variation in the use of titles and epithets. In addition to this, by applying a biographic-genealogical method, I have conducted two case studies of the usage of women s name phrases in the two chosen families. The study is based on parish registers from the period 1780−1929, estate inventory documents from the period 1780−1928, registration forms for liberty of trade from the period 1880−1908, family announcements on newspapers from the period 1829−1888, gravestones from the period 1796−1929 and diaries from the periods 1799−1801 and 1818−1820 providing a corpus of 5 950 name phrases. The syntactic-semantic analysis has revealed the overall picture of various ways of denoting women in official documents. In Helsinki, towards the end of the 19th century, the use of inherited family names seems to be almost fully developed in official contexts. At the late 19th century, a patronymic still appears as the only surname of some working-class women whereas in the early 20th century patronymics were only entered in the parish register as a kind of middle name. In the beginning of the 19th century, most married women were still registered under their maiden names, with a few exceptions among the bourgeoisie and upper class. The comparative analysis of name phrases in diaries, however, indicates that the use of the husband s family name by married women was a much earlier phenomenon in private contexts than in official documents. Keywords: socio-onomastics, syntactic-semantic analysis, name phrase, patronymic, maiden name, husband s family name
Resumo:
The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.
Resumo:
Indole butyric acid (IBA) initiates roots in the hypocotyl tissue of Phaseolus vulgaris (French bean). The response is dependent on the concentration of IBA and the duration of exposure to the hormone. IBA enhances the rate of total protein synthesis in ca 30 min after exposure of the hypocotyl segments to the hormone. There is no detectable change in total or poly(A)-containing RNA synthesis in this period although significant increases are seen 2 hr after hormone pre-treatment. The early IBA-mediated increase in protein synthesis (30 min) is not sensitive to Actinomycin D but the antibiotic blocks the increase manifested 2 hr after hormone pre-treatment. Inhibition of early protein synthesis by cycloheximide depresses and delays root initiation. Cytosol prepared from IBA-treated hypocotyl tissue stimulates protein synthesis in vitro to a greater extent than that of the control.
Resumo:
This correspondence aims at reporting the results of an analysis carried out to find the effect of a linear potential variation on the gate of an FET.
Resumo:
The effect of neutralizing FSH or LH on ovarian lipids in the cycling hamster was studied. In the normal cycling hamster on the day of proestrus, histochemical examination revealed the presence of sudanophilic lipids in the granulosa cells of the follicles and in the interstitium. A clear reduction in the intensity of lipid staining was observed on proestrus in the ovary of hamsters treated with FSH antiserum on the previous proestrus. Similar treatment with antiserum to LH, on the other hand, caused an accumulation of lipids in these structures. Estimation of the free and esterified fractions of cholesterol and triglycerides in the nonluteal tissue of the ovary of hamsters on proestrus following treatment with FSH antiserum on the previous proestrus revealed a significant reduction in all 3 lipid components. Even a short term deprivation of FSH caused a similar reduction in these lipids in the ovary. In contrast, treatment with LH antiserum either on the previous proestrus or on the previous day (diestrus-2) resulted in an enhancement in esterified cholesterol and triglycerides, while it caused a reduction in the free cholesterol fraction of the ovary on proestrus.It is suggested that though treatment with antisera to either FSH or LH causes a disruption in follicular maturation, their effect on lipid metabolism is different. A positive role for FSH and LH in maintaining normal sterol and triglyceride levels in the nonluteal ovarian tissue of cycling hamster is indicated.
Resumo:
Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.
Resumo:
Habitat fragmentation produces patches of suitable habitat surrounded by unfavourable matrix habitat. A species may persist in such a fragmented landscape in an equilibrium between the extinctions and recolonizations of local populations, thus forming a metapopulation. Migration between local populations is necessary for the long-term persistence of a metapopulation. The Glanville fritillary butterfly (Melitaea cinxia) forms a metapopulation in the Åland islands in Finland. There is migration between the populations, the extent of which is affected by several environmental factors and variation in the phenotype of individual butterflies. Different allelic forms of the glycolytic enzyme phosphoglucose isomerase (Pgi) has been identified as a possible genetic factor influencing flight performance and migration rate in this species. The frequency of a certain Pgi allele, Pgi-f, follows the same pattern in relation to population age and connectivity as migration propensity. Furthermore, variation in flight metabolic performance, which is likely to affect migration propensity, has been linked to genetic variation in Pgi or a closely linked locus. The aim of this study was to investigate the association between Pgi genotype and the migration propensity in the Glanville fritillary both at the individual and population levels using a statistical modelling approach. A mark-release-recapture (MRR) study was conducted in a habitat patch network of M. cinxia in Åland to collect data on the movements of individual butterflies. Larval samples from the study area were also collected for population level examinations. Each butterfly and larva was genotyped at the Pgi locus. The MRR data was parameterised with two mathematical models of migration: the Virtual Migration Model (VM) and the spatially explicit diffusion model. VM model predicted and observed numbers of emigrants from populations with high and low frequencies of Pgi-f were compared. Posterior predictive data sets were simulated based on the parameters of the diffusion model. Lack-of-fit of observed values to the model predicted values of several descriptors of movements were detected, and the effect of Pgi genotype on the deviations was assessed by randomizations including the genotype information. This study revealed a possible difference in the effect of Pgi genotype on migration propensity between the two sexes in the Glanville fritillary. The females with and males without the Pgi-f allele moved more between habitat patches, which is probably related to differences in the function of flight in the two sexes. Females may use their high flight capacity to migrate between habitat patches to find suitable oviposition sites, whereas males may use it to acquire mates by keeping a territory and fighting off other intruding males, possibly causing them to emigrate. The results were consistent across different movement descriptors and at the individual and population levels. The effect of Pgi is likely to be dependent on the structure of the landscape and the prevailing environmental conditions.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Basepair stacking calculations have been carried out to understand the conformational polymorphism of DNA and its sequence dependence. The recently developed self-consistent parameter set, which is specially suitable for describing irregular DNA structures, has been used to describe the geometry of a basepair doublet. While for basepairs without any propeller, the favourable stacking patterns do not appear to have very strong features, much more noticeable sequence dependent stacking patterns emerge once a propeller is applied to the basepairs. The absolute minima for most sequences occurs for a doublet geometry close to the B-DNA fibre models. Hence in the B-DNA region, no strong sequence dependent features are found, but the range of doublet geometries observed in the crystal structures generally lie within the low energy contours, obtained from stacking energy calculations. The doublet geometry corresponding to the A-DNA fibre model is not energetically favourable for the purine-pyrimidine sequences, which prefer small roll angle values when the slide has a large negative value as in A-DNA. However positive roll with large negative slide is allowed for GG, GA, AG and the pyrimidine-purine steps. This is consistent with the observed geometries of various steps in A-DNA crystals. Thus the general features of the basepair doublets predicted from these theoretical studies agree very well with the results from crystal structure analysis. However, since most sequences show an overall preference for B-type doublet geometry, the B --> A transition for random sequence DNA cannot be explained on the basis of basepair stacking interactions.
Resumo:
The phenomenon of neurotransmitter-stimulated incorporation of32Pi into phosphatidic acid and inositol phosphatides (neurotransmitter effect) in developing brain was studied in vitro as a possible measure of synaptogenesis. While the neurotransmitter effect was not observed with brain homogenates, highly consistent and significant effects were noted with brain tissue suspensions obtained by passing the tissue through nylon bolting cloth. The magnitude of the effect decreased with the increase in mesh number. Maximum stimulations obtained with the 33 mesh adult brain cortex preparations (mean±S.E.M. of6experiments) were203 ± 8%, 316 ± 11 % and150 ± 8% with 10−3 M acetylcholine (ACh) + 10−3 M eserine; 10−2 M norepinephrine (NE) and 10−2 M serotonin (5-HT), respectively. Experiments with developing rat brain at 7, 14 and 21 days of age showed that the neurotransmitter effects due to ACh, NE and 5-HT increase progressively in different regions of the brain but that there are marked regional differences. It is suggested that the neurotransmitter effect is a valid biochemical correlate of synaptogenesis. In rats undernourished from birth t0 21 days of age, by increasing the litter size, the neurotransmitter effect with ACh, NE or 5-HT was not altered in the cortex but was significantly reduced in the brain stem. In cerebellum the effects due to ACh and NE were significantly altered, while that with 5-HT was unaffected. It is concluded that cholinergic, adrenergic and serotonergic synapses are relatively unaffected in the cortex but are significantly affected in the brain stem by undernutrition. In the cerebellum of undernourished rats the adrenergic and cholinergic, but not serotonergic systems, are altered.