999 resultados para Basic Blue 41
Resumo:
n.s. no.16(1983)
Resumo:
We document the expansion of the breeding distribution of the Little Blue Heron Egretta caerulea (Linnaeus, 1758) to 850 km beyond its previous southern limit in South America. In addition we present data on abundance, breeding biology and food of the species in the Patos Lagoon estuary, the area which the species recently colonized. The maximum abundance recorded in the breeding colony and in a nocturnal roosting site was 53 and 49 individuals respectively. Nesting occurred from September to March. Birds nested in a mixed breeding colony together with about 3,000 breeding pairs of seven other species of Pelecaniformes, in a swampy forest near the margin of the estuary. Five nests were between 1.5 and 4.3 m from the ground, on the shrub Daphnopsis racemosa (Thymelaeaceae), on the trees Sebastiana brasiliensis (Euphorbiaceae) and Mimosa bimucronata (Leguminosae), or on the bamboo Bambusa sp. (Poaceae). Four nests produced two fledglings each, while one nest was abandoned. Of 13 grouped samples of food regurgitated by five nestlings, Pink Shrimp Farfantepenaeus paulensis (Perez-Farfante, 1967) constituted 70% in mass, while total length of ingested fishes and shrimps varied mostly between 20 and 50 mm. Estuarine prey items represented 99% of the total food mass. The recent southward expansion of the breeding range of the Little Blue Heron in South America may be a response to climate warming of the Patos Lagoon estuary. Degradation of estuaries in the southwestern Atlantic may also be forcing the birds to breed in areas outside previous geographical range.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
Treball de recerca realitzat per un alumne d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2005. La criptografia és l’art d’escriure un llenguatge convingut, amb l’ús d’unes claus i de la seva operació inversa se’n diu criptoanalitzar. Els sistemes criptogràfics han estat emprats al llarg de la història. Actualment existeixen multituds de software i de hardware destinats a analitzar el tràfic de dades en xarxes de computadores. Encara que aquestes eines constitueixen un avenç en tècniques de seguretat i protecció, el seu ús indegut es al mateix temps un greu problema i una enorme font d’atacs a la intimitat dels seus usuaris i a la integritat dels seus propis sistemes. Des d’aquest punt de vista, s’explica com s’ha dissenyat dos aplicacions informàtiques per encriptar i desencriptar.
Resumo:
Combined media on photographic paper. 55½" x 86" Private Collection
Resumo:
The engineers of the modern University City are constructing a graceful bridge, named PONTE OSWALDO CRUZ, that crosses a portion of the Guanabara Bay (Fig. 1). The work at west pillar stopped for 3 years (The concret structure in Est. 1). As it will be seen from n.º 1 5 of the fig. 1, Est. I, the base of the structure will have five underground boxes of reinforcement, but, to-day they are just like as five uncovered water ponds, until at present: May 1963. (Est. I fig. 3, n.º 3 pond n.º 3; A. old level of the water; B. actual level of the water; c. green water; E. mass of bloom of blue algae Microcystis aeruginosa). Soon after SW portion, as 5 cells in series, of the pillar abutments, and also the NE portion nearly opposite in the Tibau Mount will be filled up with earth, a new way will link Rio City and the University City. We see to day Est. I, fig. 1 the grasses on the half arenous beach of the Tibau Point. These natural Cyperaceae and Gramineae will be desappear because of so a new road, now under construction, when completed will be 33 feet above the mean sea level, as high as the pillar, covering exactly as that place. Although rainfall was the chief source of water for these ponds, the first water (before meterorological precipitations of whatever first rain it might fall) was a common tap water mixed with Portland Cement, which exuded gradually through the pores of the concret during its hardenning process. Some data of its first cement water composition are on the chemical table, and in Tab. n.º 4 and "Resultado n.º 1". The rain receiving surface of each pond were about 15 by 16 feet, that is, 240 square feet; when they were full of water, their depth was of 2 feet 3", having each pond about 4,000 gallons. Climatic conditions are obviously similar of those of the Rio de Janeiro City: records of temperature, of precipitation and evaporation are seen on the graphics, figs. 2, 3, 4. Our conceptions of 4 phases is merely to satisfy an easy explanation thus the first phase that of exudation of concrete. We consider the 2nd. phase formation of bacterian and cyanophycean thin pellicel. 3rd. phase - dilution by rains, and fertilisation by birds; the 4th phase - plankton flora and fauna established. The biological material arrived with the air, the rains, and also with contaminations by dusts; with big portion of sand, of earth, and leaves of trees resulted of the SW wind actions in the storming days (See - Est. I, fig. 3, G. - the mangrove trees of the Pinheiro Island). Many birds set down and rest upon the pillar structure, its faeces which are good fertilizers fall into the ponds. Some birds were commonly pigeons, black ravens, swallows, sparrows and other sea mews, moor hens, and a few sea birds of comparatively rare occurence. We get only some examples of tropical dust contaminated helioplankton, of which incipient observations were been done sparcely. See the systematic list of the species of plankters. Phytoplankters - Cyanophyta algae as a basic part for food of zooplankters, represented chiefly by rotiferse, water-fleas Moinodaphnia and other Crustacea: Ostracoda Copepoda and Insecta: Chironomidae and Culicidae larvae. The polysaprobic of septic irruptions have not been done only by heating in summer, and, a good reason of that, for example: when the fifth pond was in polysaprobic phase as the same time an alike septic phase do not happened into the 3rd. pond, therefore, both were in the same conditions of temperature, but with unlike contaminations. Among the most important aquatic organisms used as indicatiors of pollution - and microorganisms of real importance in the field of sanitary science, by authorities of renown, for instance: PALMER, PRESCOTT, INGRAM, LIEBMANN, we choose following microalgae: a) The cosmopolite algae Scenedesmus quadricuada, a common indicator in mesosaprobio waters, which lives between pH 7,0 and it is assimilative of NO[3 subscripted] and NH[4 subscripted]. b) Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c) Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis) when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d) Analcystis cyanea (= M. aeruginosa) as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e) Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f) As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent). The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L. In these ponds Asplanchna lived in 0,2 P.PO[4 subscripted]. (Remember the hydobiological observations foreign to braslian waters refer only from 0.06 to 0,010 mg. L. P.PO[4 subscripted]; and they refer resistance to 0.8 N.NH[4 subscripted]). By our data, that rotiger resist commonly to 1.2 until 1.8 mg. L.N.NH[4 subscripted]; here in our ponds and, when NO[2 subscripted] appears Asplanchna desappears. It may be that Asplanchna were devoured by nitrite resistant animals of by Culicidae or other mosquitoes devoured by Due to these facts the number and the distribution of Asplanchna varies considerabley; see - plates of plankton successions. g) Brachionus one of the commonest members of class Rotatoria was frquently found in abundance into the ponds, and we notice an important biological change produce by the rotifer Brachonus colyciflorus: the occurence of its Brachionus clayciflorus forms pallas, is rare in Brazil, as we know about this. h) When we found the water flea MOinodaphnia we do not record simultanous presence of the blue algae Agmenellun (= Merismopedia).
Resumo:
BACKGROUND: We conducted a randomized, phase II, multicenter study to evaluate the anti-epidermal growth factor receptor (EGFR) mAb panitumumab (P) in combination with chemoradiotherapy (CRT) with standard-dose capecitabine as neoadjuvant treatment for wild-type KRAS locally advanced rectal cancer (LARC). PATIENTS AND METHODS: Patients with wild-type KRAS, T3-4 and/or N+ LARC were randomly assigned to receive CRT with or without P (6 mg/kg). The primary end-point was pathological near-complete or complete tumor response (pNC/CR), defined as grade 3 (pNCR) or 4 (pCR) histological regression by Dworak classification (DC). RESULTS: Forty of 68 patients were randomly assigned to P + CRT and 28 to CRT. pNC/CR was achieved in 21 patients (53%) treated with P + CRT [95% confidence interval (CI) 36%-69%] versus 9 patients (32%) treated with CRT alone (95% CI: 16%-52%). pCR was achieved in 4 (10%) and 5 (18%) patients, and pNCR in 17 (43%) and 4 (14%) patients. In immunohistochemical analysis, most DC 3 cells were not apoptotic. The most common grade ≥3 toxic effects in the P + CRT/CRT arm were diarrhea (10%/6%) and anastomotic leakage (15%/4%). CONCLUSIONS: The addition of panitumumab to neoadjuvant CRT in patients with KRAS wild-type LARC resulted in a high pNC/CR rate, mostly grade 3 DC. The results of both treatment arms exceeded prespecified thresholds. The addition of panitumumab increased toxicity.
Resumo:
Projecte d'adaptació del programa GNU Chess al sistema de grid computing 'Condor'. I amb això, es planteja un estudi sobre els algorismes de cerca i la seva aplicació en entorns distribuïts. Una sèrie de proves sobre unes mostres de una partida d'escacs contra el propi GNU Chess ens ajuden a posar de relleu els avantatges i inconvenients de cada un dels algorismes proposats.
Resumo:
Les invasions biològiques representen una greu amenaça per al funcionament dels ecosistemes i per a la preservació de la biodiversitat.. La formiga argentina (Linepithema humile) està considerada com una de les 100 espècies invasores més nocives. Prospera en extenses àrees de clima mediterrani de regions temperades i subtropicals de tots els continents amb l’excepció de l’Antàrtida. És una formiga dominant i una competidora agressiva que mitjançant múltiples mecanismes, des de predació directe a competència, produeix efectes negatius en una amplia varietat de taxons, principalment formigues i altres artròpodes, però també vertebrats. S’ha investigat, per primera vegada, els efectes de la formiga invasiva sobre les comunitats d’artròpodes de fullatge i com aquestes pertorbacions es transmeten en la xarxa tròfica del bosc esclerofil•le mediterrani. En les suredes estudiades la invasió de formiga argentina és causa directe de la extinció local de la gran majoria de poblacions de formigues natives. En el període mostrejat s’han constatat també impactes negatius en la diversitat i en l’abundància d’artròpodes natius en les capçades dels arbres, particularment d’erugues. Una avaluació preliminar basada únicament amb dades del 2005 indica que, reduint la disponibilitat d’erugues, la formiga argentina empobreix l’hàbitat reproductiu de la mallerenga blava (Parus caeruleus). La mallerenga blava basa la dieta insectívora estricte de la seva pollada fonamentalment en les erugues. No hem detectat impactes en l’èxit reproductiu de les mallerengues blaves en zones envaïdes. Els polls crescuts en àrees envaïdes assoleixen una condició física similar als de les zones no envaïdes, però la reducció en la disponibilitat d’erugues associada a la invasió de formiga argentina es tradueix en un creixement descompassat i en una menor mida estructural del polls volanders. Així, les pertorbacions en la comunitat d’artròpodes associades a la invasió de la formiga argentina promouen efectes bottom-up que acaben perjudicant el desenvolupament dels polls de mallerenga blava.
Resumo:
The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY #103) was measured by liquid chromatography-mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.