998 resultados para Astrophysics.
Resumo:
We correct the estimates of the dispersions in the rotational velocities for early-type stars in our Galaxy (Dufton et al. 2006, A&A, 457, 265) and the Magellanic Clouds (Hunter et al. 2008, A&A, 479, 541). The corrected values are pi(1/4) (i.e. approximately 33%) larger than those published in the original papers.
Resumo:
Aims. We have previously analysed the spectra of 135 early B-type stars in the Large Magellanic Cloud (LMC) and found several groups of stars that have chemical compositions that conflict with the theory of rotational mixing. Here we extend this study to Galactic and Small Magellanic Cloud (SMC) metallicities.
Resumo:
We have looked for SiO emission as evidence of shocks in the high mass star formation region G34.26+0.15. JCMT, VLA and FCRAO observations show that SiO emission is widespread across the region. The SiO emission highlights a massive, collimated out ow and other regions where stellar winds are interacting with molecular clumps. As in other star forming regions, there is also SiO at ambient velocities which is related to the out ow activity. No strong SiO abundance enhancement was measured in either the out ow or the low velocity gas, though abundances up to 10(-8) are possible if the SiO is locally enhanced in clumps and optically thick. SiO emission is not detected from the hot core itself, indicating either that SiO is not strongly enhanced in the hot core or that column densities in the region where grain mantle evaporation has taken place are low. In line of sight spiral arm clouds, we measure a SiO abundance of 0.4-2 x 10(-10), consistent with previous estimates for quiescent clouds.
Resumo:
We report a new version of the UMIST database for astrochemistry. The previous (1995) version has been updated and its format has been revised. The database contains the rate coefficients, temperature ranges and - where available - the temperature dependence of 4113 gas-phase reactions important in astrophysical environments. The data involve 396 species and 12 elements. We have also tabulated permanent electric dipole moments of the neutral species and heats of formation. A new table lists the photo process cross sections (ionisation, dissociation, fragmentation) for a few species for which these quantities have been measured. Data for Deuterium fractionation are given in a separate table. Finally, a new online Java applet for data extraction has been created and its use is explained in detail. The detailed new datafiles and associated software are available on the World Wide Web at http://www.rate99.co.uk.
Resumo:
We have developed new models of the chemistry of deuterium for investigating fractionation in interstellar molecular clouds. We have incorporated the latest information on reactions which affect deuteration, extended previous models to include S-D bonds for the first time and included the gasphase chemistry of some doubly-deuterated species. We present models for a wide range of physical parameters, including density, temperature, elemental abundances, and the freeze out of molecules on to dust grains. We discuss the detailed fractionation of particular species and show how fractionation can be used to probe the history of interstellar matter. The freeze out of molecules onto dust leads to significant enhancement in fractionation ratios and, in particular, to large fractionation in doubly-deuterated species.
Resumo:
We present ISO-SWS spectra of the O-rich Mira variable R Gas, showing CO2 in absorption and emission, and H2O in absorption. The CO2 absorption feature is the 01(1)0 - 00(0)0 ro-vibrationaI band at 14.97 mu m. The emission features are the 10(0)0-01(1)0 and 11(1)0 - 02(2)0 re-vibrational transitions at 13.87 and 13.48 mu m respectively. The water absorption spectrum shows the nu(1) and nu(3) re-vibrational bands in the 2.75 - 3 mu m region. Using LTE models, we derive physical parameters for the features. We find the CO2 emission temperature to be similar to 1100 K. We discuss the nature of the CO2 feature at 15 mu m and show that it can be modeled as an emission/absorption band by deviating front thermal equilibrium for the population of the 01(1)0 vibrational level. The H2O absorption spectrum is shown to arise from gas at different temperatures, but can be fit reasonably well with two components at T = 950 K and T = 250 K. The CO2 emission and hut H2O absorption temperatures an similar, suggesting chat these features probe the same region of the inner envelope. We discuss the inner envelope chemistry using molecular equilibrium calculations and recent modeling work by Duari et al. (1999), and find our observations consistent with the results.
Resumo:
We here analyse the observational SO and CS data presented in Nilsson ct al. (2000). The SO/CS integrated intensity ratio maps are presented for 19 molecular clouds, together with tables of relevant ratios at strategic positions, where we have also observed (SO)-S-34 and/or (CS)-S-34. The SO/CS abundance ratio as calculated from an LTE analysis is highly varying within and between the sources. Our isotopomer observations and Monte Carlo simulations verify that this is not an artifact due to optical depth problems. The variation of the maximum SO/CS abundance ratio between the clouds is 0.2-7. The largest variations within a cloud are found for the most nearby objects, possibly indicating resolution effects. We have also performed time dependent chemical simulations. We compare the simulations with our observed SO/CS abundance ratios and suggest a varying oxygen to carbon initial abundance, differing temporal evolution, density differences and X-ray sources associated with young stellar objects as possible explanations to the variations. In particular, the observed variation of the maximum SO/CS abundance ratio between the clouds can be explained by using initial O/C+ abundance ratios in the range 1.3-2.5. We finally derive a relationship between the SO/CS and O-2/CO abundance ratios, which may be used as a guide to find the most promising interstellar O-2 search targets.
Resumo:
We present 450 and 850 mu m images of five ultracompact HII regions (G10.47, G12.21, G13.87, G31.41 and G43.89) taken at 9
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
We present the first results from a time-dependent chemical model to include a gas-phase reaction scheme for producing doubly-deuterated species. Under normal conditions the formation of these species is inefficient. However, when the effects of the freeze out of gas phase species onto grains is included in the chemistry we find that the fractionation of both singly and doubly deuterated species is enhanced. We compare the predictions from our models with recent observations of deuterated molecules in L134N and find that, contrary to previous expectations, we can reproduce the observed levels of fractionation without recourse to an active grain-surface chemistry.
Resumo:
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity (similar or equal to 10(41) erg s(-1) at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of Co-56. We propose that this is evidence for an explosion and formation of Ni-56 (0.0014 +/- 0.0003 M-circle dot). Spectra of SN 2008S show intense emission lines of H alpha, [Ca II] doublet and Ca II near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 AU and outer radius of 450 AU, and an inferred heating source of 3000 K. The luminosity of the central star is L similar or equal to 10(4.6) L-circle dot. All the nearby progenitor dust was likely evaporated in the explosion leaving only the much older dust lying further out in the circumstellar environment. The combination of our long-term multiwavelength monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron-capture supernova explosion in a super-asymptotic giant branch progenitor star (of initial mass 6-8 M-circle dot) embedded within a thick circumstellar gaseous envelope. We suggest that all of main properties of the electron-capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.
Resumo:
Magnetic bright points (MBPs) in the internetwork are among the smallest objects in the solar photosphere and appear bright against the ambient environment. An algorithm is presented that can be used for the automated detection of the MBPs in the spatial and temporal domains. The algorithm works by mapping the lanes through intensity thresholding. A compass search, combined with a study of the intensity gradient across the detected objects, allows the disentanglement of MBPs from bright pixels within the granules. Object growing is implemented to account for any pixels that might have been removed when mapping the lanes. The images are stabilized by locating long-lived objects that may have been missed due to variable light levels and seeing quality. Tests of the algorithm, employing data taken with the Swedish Solar Telescope, reveal that approximate to 90 per cent of MBPs within a 75 x 75 arcsec(2) field of view are detected.
Resumo:
We report the discovery of WASP-13b, a low-mass M-p = 0.46(-0.05)(+0.06) M-J transiting exoplanet with an orbital period of 4.35298 +/- 0.00004 days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well (0 <b <0.46), with radius in the range R-p similar to 1.06-1.21 R-J the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M-* = 1.03(-0.09)(+0.11) M-circle dot) and metallicity ([M/H] = 0.0 +/- 0.2), but is possibly older (8.5(-4.9)(+5.5) Gyr).