955 resultados para All-carbon quaternary
Resumo:
The advent of nanotechnology has revolutionised our ability to engineer electrode interfaces. These are particularly attractive to measure biopotentials, and to study the nervous system. In this work, we demonstrate enhanced in vitro recording of neuronal activity using electrodes decorated with carbon nanosheets (CNSs). This material comprises of vertically aligned, free standing conductive sheets of only a few graphene layers with a high surfacearea- to-volume ratio, which makes them an interesting material for biomedical electrodes. Further, compared to carbon nanotubes, CNSs can be synthesised without the need for metallic catalysts like Ni, Co or Fe, thereby reducing potential cytotoxicity risks. Electrochemical measurements show a five times higher charge storage capacity, and an almost ten times higher double layer capacitance as compared to TiN. In vitro experiments were performed by culturing primary hippocampal neurons from mice on micropatterned electrodes. Neurophysiological recordings exhibited high signal-to-noise ratios of 6.4, which is a twofold improvement over standard TiN electrodes under the same conditions. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Carbon stable isotope analysis of surface bloom scum and subsurface seston samples was conducted in shallow eutrophic lakes in China during warm seasons from 2003 to 2004. delta C-13 values of bloom scum were always higher (averaged 5 parts per thousand) than those of seston in this study, and the possible reasons were attributed to (i) direct use of atmospheric CO2 at the air-water interface, (ii) decrease in C-13 fractionation due to higher carbon fixation, (iii) active CO2 transport, and/or (iv) HCO3 accumulation. Negative correlation between delta C-13(scum) - delta C-13(seston) and pH in the test lakes indicated that phytoplankton at the subsurface water column increased isotopic enrichment under the-carbon limitation along with the increase of pH, which might in turn decreased the differences in 313 C between the subsurface seston and the surface scums. Significant positive correlations of seston 8 13C with total concentrations of nitrogen and phosphorus in water column suggested that the increase in delta C-13 of seston with trophic state was depending on nutrient (N or P, or both) supply. Our study showed that delta C-13 of phytoplankton was indicative of carbon utilization, primary productivity, and nutrient supply among the eutrophic lakes. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.
Resumo:
There was a positive correlation between the concentration of organic carbon and potential respiration as measured by carbon dioxide evolution (R-2 = 0.923) and oxygen consumption (R-2 = 0.986) in soil samples collected from the bottoms of drained ponds. This finding supports the frequent use of organic carbon analysis as an indicator of sediment respiration rate under optimal conditions in commercial aquaculture facilities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the growth of vertically-aligned nanotube forests, of up to 0.2 mm in height, on an 85:15 sp2:sp3 carbon support with Fe catalyst. This is achieved by purely-thermal chemical vapour deposition with the catalyst pretreated in inert environments. Pretreating the catalyst in a reducing atmosphere causes catalyst diffusion into the support and the growth of defective tubes. Other sp2:sp3 compositions, including graphite, tetrahedral amorphous carbon, and pure diamond, also lead to the growth of defective carbon morphologies. These results pave the way towards controlled growth of forests on carbon fibres. It could give rise to applications in enhanced fuel cell electrodes and better hierarchical carbon fibre-nanotube composites. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Up to now, there have been few studies in the annual fluxes of greenhouse gases in lakes of subtropical regions. The fluxes of methane (CH4) and carbon dioxide (CO2) across air-water interface were measured in a shallow, hypereutrophic, subtropical Lake Donghu (China) over a year cycle, using a static chamber technique. During the year, Lake Donghu emitted CH4 and CO2; the average flux of CH4 and CO2 was 23.3 +/- 18.6 and 332.3 +/- 160.1 mg m(-2) d(-1), respectively. The fluxes of CH4 and CO2 showed strong seasonal dynamics: CH4 emission rate was highest in summer, remaining low in other seasons, whereas CO2 was adsorbed from the atmosphere in spring and summer, but exhibited a large emission in winter. Annual carbon (C) budget across air-water interface in Lake Donghu was estimated to be 7.52 +/- 4.07 x 10(8) g. CH4 emission was correlated positively with net primary production (NPP) and temperature, whereas CO2 flux correlated negatively with NPP and temperature; however, there were no significant relationships between the fluxes of CH4 and CO2 and dissolved organic carbon, a significant difference from boreal lakes, indicating that phytoplankton rather than allochthonous matter regulated C dynamics across air-water interface of subtropical lake enriched nutrient content. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.
Resumo:
AlInGaN quaternary epilayers have been grown with various TMGa flows by metalorganic chemical vapor deposition to investigate the influence of growth rate on the structural and optical properties. Triple-axis X-ray diffraction measurements show AlInGaN epilayers have good crystalline quality. Photolummescence (PL) measurements show that the emission intensity of AlInGaN epilayers is twenty times stronger than that of AlGaN epilayer with comparable Al content. V-shaped pits are observed at the surface of AlInGaN epilayers by atomic force microscopy (AFM) and transmission electron microscopy (TEM). High growth rate leads to increased density and size of V-shaped pits, but crystalline quality is not degraded. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crack-free In0.08Al0.25Ga0.67N quaternary films, with and without thick (> 1.5 mum) high-temperature-GaN (HTGaN) interlayer, have been grown on Si(1 1 1) substrates by a low-pressure metalorganic chemical vapor deposition (MOCVD) system. Mole fractions of In and Al in quaternary alloy layers are determined by Energy dispersive spectroscopy (EDS) and Rutherford backscattering spectrometry (RBS), which are recorded as similar to8% and similar to25-27%, respectively. High-resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RT-PL) results evidence the film's single crystal structure and the existence of local In- and/or Al-rich regions. Compared with GaN film grwon on Si(1 1 1) substrate, no crack is observed in the quaternary ones. Two explanations are proposed. First, mismatch-induced strain is relaxed significantly due to gradual changes of In concentration. Second, the weak In-N bond is likely to break when the sample is cooled down to the room temperature, which is expected to favor the releasing of thermal stress. (C) 2004 Elsevier B.V. All rights reserved.