946 resultados para Acute Respiratory Illness
Resumo:
Introduction: Many experimental models using lung lavage have been developed for the study of acute respiratory distress syndrome (ARDS). The original technique has been modified by many authors, resulting in difficulties with reproducibility. There is insufficient detail on the lung injury models used, including hemodynamic stability during animal preparation and drawbacks encountered such as mortality. The authors studied the effects of the pulmonary recruitment and the use of fixed tidal volume (Vt) or fixed inspiratory pressure in the experimental ARDS model installation. Methods: Adult rabbits were submitted to repeated lung lavages with 30 ml/kg warm saline until the ARDS definition (PaO2/FiO(2) <= 100) was reached. The animals were divided into three groups, according to the technique used for mechanical ventilation: 1) fixed Vt of 10 ml/kg; 2) fixed inspiratory pressure (IP) with a tidal volume of 10 ml/kg prior to the first lung lavage; and 3) fixed Vt of 10 ml/kg with pulmonary recruitment before the first lavage. Results: The use of alveolar recruitment maneuvers, and the use of a fixed Vt or IP between the lung lavages did not change the number of lung lavages necessary to obtain the experimental model of ARDS or the hemodynamic stability of the animals during the procedure. A trend was observed toward an increased mortality rate with the recruitment maneuver and with the use of a fixed IP. Discussion: There were no differences between the three study groups, with no disadvantage in method of lung recruitment, either fixed tidal volume or fixed inspiratory pressure, regarding the number of lung lavages necessary to obtain the ARDS animal model. Furthermore, the three different procedures resulted in good hemodynamic stability of the animals, and low mortality rate. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which then were brought to exhaustion on the treadmill. Two hours after exhaustion, the rats were killed and material was collected for the determination of serum uric acid, total and high-density lipoprotein cholesterol fraction, total protein, triacylglycerols, aspartate aminotransferase, alanine aminotransferase, creatine kinase, and blood cell (monocyte, lymphocyte, neutrophil, and leukocyte) counts. Exercise was efficient in reducing lymphocyte counts, irrespective of the type of ingested cheese, but the decrease in the group fed the probiotic cheese was 22% compared with 48% in the animals fed regular cheese. Monocyte counts were unaltered in the rats fed probiotic cheese compared with a significant decrease in the rats fed the regular cheese. Most importantly, ingestion of the probiotic cheese resulted in a >100% increase in serum high-density lipoprotein cholesterol and a 50% decrease in triacylglycerols. We conclude that probiotic Minas Reseal cheese may be a viable alternative to enhance the immune system and could be used to prevent infections, particularly those related to the physical overexertion of athletes.
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.
Resumo:
Human bocavirus (HBoV) is a human virus associated with respiratory disease in children. Limited information is available on acute infection with HBoV among children admitted to hospital with community-acquired pneumonia in tropical regions and the current diagnosis is inadequate. The aims were to diagnose and describe acute HBoV infections among children hospitalized for community-acquired pneumonia. In Salvador, Brazil, 277 children with community-acquired pneumonia were prospectively enrolled. Paired serum samples were tested by IgG, IgM, and IgG-avidity enzyme immunoassays (EIAs) using recombinant HBoV VP2. HBoV DNA was detected in nasopharyngeal aspirates and serum by a quantitative polymerase-chain reaction (PCR). HBoV DNA was detected in nasopharyngeal aspirates of 62/268 (23%) children and 156/273 (57%) were seropositive. Acute primary HBoV infection was reliably diagnosed (bearing at least two acute markers: Positive IgM, a fourfold increase/conversion of IgG, low IgG avidity or viremia) in 21 (8%) of 273 patients, 90% of 20 had HBoV DNA in nasopharyngeal aspirates, 83% with a high DNA load. The median age of infection with HBoV was 16 months, range 5-36.Community-acquired pneumonia was confirmed radiographically in 85% of 20 patients with acute HBoV infection diagnosed serologically. HBoV DNA was found in nasopharyngeal aspirates of 42/246(17%) children without an acute primary HBoV infection and available nasopharyngeal aspirate. Four children with HBoV secondary immune responses were detected, lacking both IgM and viremia. HBoV infection was diagnosed accurately in children aged 5-36 months with community-acquired pneumonia confirmed radiographically. PCR of nasopharyngeal aspirates is not a reliable marker of acute HBoV infection. J. Med. Virol. 84:253-258, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Background Dengue epidemics have been reported in Brazil since 1981. In Manaus, a large city in the Amazon region, dengue is endemic with all four-virus serotypes (DENV-1, -2, -3, and -4) simultaneously causing human disease. In 2008, during a surveillance of dengue virus in mosquitoes in the district of Tancredo Neves in Manaus, 260 mosquitoes of Aedes genus were captured, identified and grouped into pools of 10 mosquitoes. Findings RNA extracts of mosquito pools were tested by a RT-Hemi-Nested-PCR for detection of flaviviruses. One amplicon of 222 bp, compatible with dengue virus serotype 4, was obtained from a pool of Aedes aegypti. The nucleotide sequence of the amplicon indicated that the mosquitoes were infected with DENV-4 of genotype I. This virus of Asian origin has been described in Manaus in 2008 infecting acute febrile illness patients. Conclusion This is the first report of dengue virus serotype 4 genotype I infecting Aedes aegypti in the Americas.
Resumo:
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Resumo:
Die zuverlässige Berechnung von quantitativen Parametern der Lungenventilation ist für ein Verständnis des Verhaltens der Lunge und insbesondere für die Diagnostik von Lungenerkrankungen von großer Bedeutung. Nur durch quantitative Parameter sind verlässliche und reproduzierbare diagnostische Aussagen über den Gesundheitszustand der Lunge möglich. Im Rahmen dieser Arbeit wurden neue quantitative Verfahren zur Erfassung der Lungenventilation basierend auf der dynamischen Computer- (CT) und Magnetresonanztomographie (MRT) entwickelt. Im ersten Teil dieser Arbeit wurde die Frage untersucht, ob das Aufblähen der Lunge in gesunden Schweinelungen und Lungen mit Akutem Lungenversagen (ARDS) durch einzelne, diskrete Zeitkonstanten beschrieben werden kann, oder ob kontinuierliche Verteilungen von Zeitkonstanten die Realität besser beschreiben. Hierzu wurden Serien dynamischer CT-Aufnahmen während definierter Beatmungsmanöver (Drucksprünge) aufgenommen und anschließend aus den Messdaten mittels inverser Laplace-Transformation die zugehörigen Verteilungen der Zeitkonstanten berechnet. Um die Qualität der Ergebnisse zu analysieren, wurde der Algorithmus im Rahmen von Simulationsrechnungen systematisch untersucht und anschließend in-vivo an gesunden und ARDS-Schweinelungen eingesetzt. Während in den gesunden Lungen mono- und biexponentielle Verteilungen bestimmt wurden, waren in den ARDS-Lungen Verteilungen um zwei dominante Zeitkonstanten notwendig, um die gemessenen Daten auf der Basis des verwendeten Modells verlässlich zu beschreiben. Es wurden sowohl diskrete als auch kontinuierliche Verteilungen gefunden. Die CT liefert Informationen über das solide Lungengewebe, während die MRT von hyperpolarisiertem 3He in der Lage ist, direkt das eingeatmete Gas abzubilden. Im zweiten Teil der Arbeit wurde zeitlich hochaufgelöst das Einströmen eines 3He-Bolus in die Lunge erfasst. Über eine Entfaltungsanalyse wurde anschließend das Einströmverhalten unter Idealbedingungen (unendlich kurzer 3He-Bolus), also die Gewebeantwortfunktion, berechnet und so eine Messtechnik-unabhängige Erfassung des Einströmens von 3He in die Lunge ermöglicht. Zentrale Fragestellung war hier, wie schnell das Gas in die Lunge einströmt. Im Rahmen von Simulationsrechnungen wurde das Verhalten eines Entfaltungsalgorithmus (basierend auf B-Spline Repräsentationen) systematisch analysiert. Zusätzlich wurde ein iteratives Entfaltungsverfahren eingesetzt. Aus zeitlich hochaufgelösten Messungen (7ms) an einer gesunden und einer ARDS-Schweinelunge konnte erstmals nachgewiesen werden, dass das Einströmen in-vivo in weniger als 0,1s geschieht. Die Ergebnisse zeigen Zeitkonstanten im Bereich von 4ms–50ms, wobei zwischen der gesunden Lungen und der ARDS-Lunge deutliche Unterschiede beobachtet wurden. Zusammenfassend ermöglichen daher die in dieser Arbeit vorgestellten Algorithmen eine objektivere Bestimmung quantitativer Parameter der Lungenventilation. Dies ist für die eindeutige Beschreibung ventilatorischer Vorgänge in der Lunge und somit für die Lungendiagnostik unerlässlich. Damit stehen quantitative Methoden für die Lungenfunktionsdiagnostik zur Verfügung, deren diagnostische Relevanz im Rahmen wissenschaftlicher und klinischer Studien untersucht werden kann.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.
Resumo:
BACKGROUND: While viral myocarditis and heart failure are recognized and feared complications of seasonal influenza A infection, only limited information is available for 2009 influenza A(H1N1)-induced heart failure. METHODS AND MAIN FINDINGS: This case series summarizes the disease course of four patients with 2009 influenza A(H1N1) infection who were treated at our institution from November 2009 until September 2010. All patients presented with severe cardiac dysfunction (acute heart failure, cardiogenic shock or cardiac arrest due to ventricular fibrillation) as the leading symptom of influenza A(H1N1) infection. Two patients most likely had pre-existent cardiac pathologies, and three required catecholamine therapy to maintain hemodynamic function. Except for one patient who died before influenza A(H1N1) infection had been diagnosed, all patients received antiviral therapy with oseltamivir and supportive critical care. Acute respiratory distress syndrome due to influenza A(H1N1) infection developed in one patient. Heart function normalized in two of the three surviving patients but remained impaired in the other one at hospital discharge. CONCLUSIONS: Influenza A(H1N1) infection may be associated with severe cardiac dysfunction which can even be the leading clinical symptom at presentation. During an influenza pandemic, a thorough history may reveal flu-like symptoms and should indicate testing for H1N1 infection also in critically ill patients with acute heart failure.
Resumo:
Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.
Resumo:
The real utilisation scenario of non-invasive ventilation (NIV) in Swiss ICUs has never been reported. Using a survey methodology, we developed a questionnaire sent to the directors of the 79 adult ICUs to identify the perceived pattern of NIV utilisation. We obtained a response rate of 62%. The overall utilisation rate for NIV was 26% of all mechanical ventilations, but we found significant differences in the utilisation rates among different linguistic areas, ranging from 20% in the German part to 48% in the French part (p <0.01). NIV was mainly indicated for the acute exacerbations of COPD (AeCOPD), acute cardiogenic pulmonary edema (ACPE) and acute respiratory failure (ARF) in selected do-not-intubate patients. In ACPE, CPAP was much less used than bi-level ventilation and was still applied in AeCOPD. The first line interface was a facial mask (81%) and the preferred type of ventilator was an ICU machine with an NIV module (69%). The perceived use of NIV is generally high in Switzerland, but regional variations are remarkable. The indications of NIV use are in accordance with international guidelines. A high percentage of units consider selected do-not-intubate conditions as an important additional indication.
Resumo:
Sclerosing cholangitis in critically ill patients (SC-CIP) with sepsis and acute respiratory distress syndrome (ARDS) is a cholestatic liver disease with a rapid progression to liver cirrhosis and hepatic failure. Data on outcome of these patients after liver transplantation (LT) are sparse.
Resumo:
Pulmonary capillary pressure (Pcap) is the predominant force that drives fluid out of the pulmonary capillaries into the interstitium. Increasing hydrostatic capillary pressure is directly proportional to the lung's transvascular filtration rate, and in the extreme leads to pulmonary edema. In the pulmonary circulation, blood flow arises from the transpulmonary pressure gradient, defined as the difference between pulmonary artery (diastolic) pressure and left atrial pressure. The resistance across the pulmonary vasculature consists of arterial and venous components, which interact with the capacitance of the compliant pulmonary capillaries. In pathological states such as acute respiratory distress syndrome, sepsis, and high altitude or neurogenic lung edema, the longitudinal distribution of the precapillary arterial and the postcapillary venous resistance varies. Subsequently, the relationship between Pcap and pulmonary artery occlusion pressure (PAOP) is greatly variable and Pcap can no longer be predicted from PAOP. In clinical practice, PAOP is commonly used to guide fluid therapy, and Pcap as a hemodynamic target is rarely assessed. This approach is potentially misleading. In the presence of a normal PAOP and an increased pressure gradient between Pcap and PAOP, the tendency for fluid leakage in the capillaries and subsequent edema development may substantially be underestimated. Tho-roughly validated methods have been developed to assess Pcap in humans. At the bedside, measurement of Pcap can easily be determined by analyzing a pressure transient after an acute pulmonary artery occlusion with the balloon of a Swan-Ganz catheter.
Resumo:
BACKGROUND: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage. METHODS: In 12 pigs [25 (1) kg], ARDS was randomly induced, either by saline lung lavage or oleic acid (OA) injection, and 3 animals served as controls. A respiratory breathhold manoeuvre without spontaneous breathing at different continuous positive airway pressure (CPAP) was applied in random order (CPAP levels of 5, 10, 15, 30, 35 and 50 cm H(2)O) and spiral-CT scans of the total lung were acquired at each CPAP level (slice thickness=1 mm). In each spiral-CT the volume of total lung parenchyma, tissue, gas, non-aerated, well-aerated, poorly aerated, and over-aerated lung was calculated. RESULTS: In both ARDS models non-aerated lung volume decreased significantly from CPAP 5 to CPAP 50 [oleic acid lung injury (OAI): 346.9 (80.1) to 96.4 (48.8) ml, P<0.001; lavage-ARDS: 245 17.6) to 42.7 (4.8) ml, P<0.001]. In lavage-ARDS poorly aerated lung volume decreased at higher CPAP levels [232 (45.2) at CPAP 10 to 84 (19.4) ml at CPAP 50, P<0.001] whereas in OAI poorly aerated lung volume did not vary at different airway pressures. CONCLUSIONS: In both ARDS models well-aerated and non-aerated lung volume respond to different CPAP levels in a comparable fashion: Thus, a cyclical alveolar collapse seems to be part of the derecruitment process also in the OA-ARDS. In OA-ARDS, the increase in poorly aerated lung volume reflects the specific initial lesion, that is capillary leakage with interstitial and alveolar oedema.
Resumo:
Inquilinus limosus is a novel Gram-negative bacterium of the subdivision alpha-Proteobacteria recently found in the airways of patients with cystic fibrosis (CF). Here, the authors report on the clinical courses of six CF patients colonized with I. limosus. Five patients suffered from either an acute respiratory exacerbation or a progressive loss of pulmonary function, whereas one patient was in a stable clinical situation. This study focused on two aims: (i) the clonal analysis of I. limosus isolates by random amplified polymorphic DNA (RAPD)-PCR, and (ii) the clarification of whether the presence of I. limosus in the respiratory tract is associated with a specific serum antibody response. Serum IgG was detected by immunoblotting using I. limosus whole-cell-lysate proteins as antigens. Sera from healthy blood donors (n=10) and from CF patients colonized with Pseudomonas aeruginosa (n=10) were found to be immunoblot negative. All six Inquilinus-positive patients raised serum IgG antibodies against various I. limosus antigens. Surprisingly, in one patient, a specific I. limosus serum antibody response was already detected 1 year prior to Inquilinus-positive sputum cultures. Two prominent antigens were characterized by MALDI-MS: a 23 kDa protein revealed homology to the outer membrane lipoprotein OmlA of Actinobacillus pleuropneumoniae, and an 18 kDa protein to a protein-tyrosine phosphatase of Burkholderia cepacia. In conclusion, detection of I. limosus is accompanied by a specific serum antibody response and may reflect the infectious/pathogenic potential of I. limosus. Moreover, IgG immunoblotting may be useful to detect early infection with I. limosus and may support the selective cultivation of this novel emerging pathogen.