954 resultados para ACTIN CYTOSKELETON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Molecular e Saúde).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of adhesion of three different strains of Trichomonas vaginalis to a polystyrene substrate was analysed. The process of adhesion was dependent on the time of incubation and the pH of the phosphate-buffered solution (PBS) in which the parasites were suspended. The highest indices of adhesion were observed after an incubation time of 60 min at pH 6.6. The adhesion index increased when the parasites were incubated in the presence of culture media or when Ca++ or Mg++ was added to the PBS solution, whereas cytochalasin B, trypsin or neuraminidase reduced adhesion. Incubation of the parasites in the presence of poly-L-lysine facilitated the process of adhesion. Incubation of the parasites or polystyrene beads in the presence of poly-L-lysine led to important changes in their surface charge.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parvalbumin-immunoreactive interneurons are surrounded by perineuronal nets, containing molecules of the extracellular matrix (e.g. tenascin-R). Furthermore, they seem to have a special cytoskeleton composed of, among others, ankyrinR and beta Rspectrin. In the present developmental study we showed that the intracellular markers parvalbumin, ankyrinR and beta Rspectrin as well as Vicia Villosa agglutinin, an extracellular marker for perineuronal nets, appeared in the second postnatal week. In the third postnatal week, ankyrinR and beta R spectrin were present in the parvalbumin-positive interneurons. Tenascin-R appeared in a similar topographic distribution as the intracellular markers. The adult pattern was established upon the end of the fourth postnatal week. Our results indicate that cytoskeletal maturity maybe a prerequisite for the organization of perineuronal nets of extracellular matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain invasion is a biological hallmark of glioma that contributes to its aggressiveness and limits the potential of surgery and irradiation. Deregulated expression of adhesion molecules on glioma cells is thought to contribute to this process. Junctional adhesion molecules (JAMs) include several IgSF members involved in leukocyte trafficking, angiogenesis, and cell polarity. They are expressed mainly by endothelial cells, white blood cells, and platelets. Here, we report JAM-C expression by human gliomas, but not by their normal cellular counterpart. This expression correlates with the expression of genes involved in cytoskeleton remodeling and cell migration. These genes, identified by a transcriptomic approach, include poliovirus receptor and cystein-rich 61, both known to promote glioma invasion, as well as actin filament associated protein, a c-Src binding partner. Gliomas also aberrantly express JAM-B, a high affinity JAM-C ligand. Their interaction activates the c-Src proto-oncogene, a central upstream molecule in the pathways regulating cell migration and invasion. In the tumor microenvironment, this co-expression may thus promote glioma invasion through paracrine stimuli from both tumor cells and endothelial cells. Accordingly, JAM-C/B blocking antibodies impair in vivo glioma growth and invasion, highlighting the potential of JAM-C and JAM-B as new targets for the treatment of human gliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engagement of the T cell receptor leads to the accumulation of filamentous actin, which is necessary for the formation of the immunological synapse and subsequent T cell activation. In the December issue of Molecular Cell, Sasahara et al. provide new insights into the link between the T cell receptor and actin assembly in the immunological synapse, and reveal a critical regulatory role for PKC theta in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70) and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Smoothelin is a cytoskeletal protein of differentiated smooth muscle cells with contractile capacity, distinguishing it from other smooth muscle proteins, such as smooth muscle actin (SMA). OBJECTIVE: To evaluate the expression of smoothelin and SMA in the skin in order to establish specific localizations of smoothelin in smooth muscle cells with high contractile capacity and in the epithelial component of cutaneous adnexal structures. Methods: Immunohistochemical analysis (smoothelin and SMA) was performed in 18 patients with normal skin. RESULTS: SMA was expressed by the vascular structures of superficial, deep, intermediate and adventitial plexuses, whereas smoothelin was specifically expressed in the cytoplasm of smooth muscle cells of the deepest vascular plexus and in no other plexus of the dermis. The hair erector muscle showed intense expression of smoothelin and SMA. Cells with nuclear expression of smoothelin and cytoplasmic expression of SMA were observed in the outer root sheath of the inferior portion of the hair follicles and intense cytoplasmic expression in cells of the dermal sheath to SMA. CONCLUSIONS: We report the first study of smoothelin expression in normal skin, which differentiates the superficial vascular plexus from the deep. The deep plexus comprises vessels with high contractile capacity, which is important for understanding dermal hemodynamics in normal skin and pathological processes. We suggest that the function of smoothelin in the outer root sheath may be to enhance the function of SMA, which has been related to mechanical stress. Smoothelin has not been studied in cutaneous pathology; however we believe it may be a marker specific for the diagnosis of leiomyomas and leiomyosarcomas of the skin. Also, smoothelin could differentiate arteriovenous malformations of cavernous hemangioma of the skin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1.