986 resultados para 809
Reaction-induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates
Resumo:
Aims: The current study reports clinical outcomes at three year follow-up of the LEADERS clinical trial which was the first all-comers trial comparing a new generation biodegradable polymer biolimus drug-eluting stent (BES) with the first generation permanent polymer sirolimus-eluting stent (SES). Methods and results: One thousand seven hundred and seven patients were randomised to unrestricted use of BES (n=857) or SES (n=850) in an all-comers population. Three year follow-up was available in 95% of the patients, 812 treated with BES and 809 treated with SES. At three years, BES remains non-inferior to SES for the primary endpoint of major adverse cardiac events (composite of cardiac death, myocardial infarction (MI), or clinically-indicated target vessel revascularisation (CI-TVR) (BES 15.7% versus SES 19%; HR 0.82 CI 0.65-1.03; p=0.09). The MACE Kaplan Meier event curves increasingly diverge with the difference in events increasing from 1.4% to 2.4% and 3.3% at 1, 2 and 3 years, respectively in favour of BES. The rate of cardiac death was non-significantly lower 4.2% versus 5.2% (HR=0.81 CI 0.52-1.26; p=0.34) and the rate of myocardial infarction was equivalent 7.2% versus 7.1% (HR 1.01 CI 0.70-1.44; p=0.97) for BES versus SES, respectively. Thus BES was non-inferior to SES in all the safety endpoints. Clinically-indicated TVR occurred in 9.4% of BES treated patients versus 11.1% of SES treated patients (HR 0.84 CI 0.62-1.13; p=0.25). Rates of definite stent thrombosis were 2.2% for BES and 2.9% for SES (HR 0.78 CI 0.43-1.43; p=0.43), with the event rate increase of 0.2% from one to three years for BES and 0.9% for SES. For patients presenting with ST-elevation myocardial infarction BES was superior to SES in reducing MACE. Conclusions: The findings of the three year follow-up support the claim that the biodegradable polymer biolimus-eluting stent has equivalent safety and efficacy to permanent polymer sirolimus-eluting stent in an all-comers patient population. Its performance is superior in some subpopulations such as in ST-elevation MI patients and event rates for BES are overall lower than for SES with a trend toward increasing divergence of outcomes over three years. - See more at: http://www.pcronline.com/eurointervention/42nd_issue/125/#sthash.E5HhMQ4a.dpuf
Resumo:
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.
Resumo:
Data from prospective cohort studies regarding the association between subclinical hyperthyroidism and cardiovascular outcomes are conflicting.We aimed to assess the risks of total and coronary heart disease (CHD) mortality, CHD events, and atrial fibrillation (AF) associated with endogenous subclinical hyperthyroidism among all available large prospective cohorts.
Resumo:
The Gerontological Society of America encourages policymakers and program directors in the field of aging to make policy and program decisions based on applied research. To aid in achieving this goal, the Society conducts the Fellowship Program in Applied Gerontology (FPAG), which places postdoctoral academic gerontologists for 3 months in agencies and organizations that plan or deliver services to older people. The program's history and accomplishments are described and up-dated.
Resumo:
RATIONALE: Structural alterations to airway smooth muscle (ASM) are a feature of asthma and cystic fibrosis (CF) in adults. OBJECTIVES: We investigated whether increase in ASM mass is already present in children with chronic inflammatory lung disease. METHODS: Fiberoptic bronchoscopy was performed in 78 children (median age [IQR], 11.3 [8.5-13.8] yr): 24 with asthma, 27 with CF, 16 with non-CF bronchiectasis (BX), and 11 control children without lower respiratory tract disease. Endobronchial biopsy ASM content and myocyte number and size were quantified using stereology. MEASUREMENTS AND MAIN RESULTS: The median (IQR) volume fraction of subepithelial tissue occupied by ASM was increased in the children with asthma (0.27 [0.12-0.49]; P < 0.0001), CF (0.12 [0.06-0.21]; P < 0.01), and BX (0.16 [0.04-0.21]; P < 0.01) compared with control subjects (0.04 [0.02-0.05]). ASM content was related to bronchodilator responsiveness in the asthmatic group (r = 0.66, P < 0.01). Median (IQR) myocyte number (cells per mm(2) of reticular basement membrane) was 8,204 (5,270-11,749; P < 0.05) in children with asthma, 4,504 (2,838-8,962; not significant) in children with CF, 4,971 (3,476-10,057; not significant) in children with BX, and 1,944 (1,596-6,318) in control subjects. Mean (SD) myocyte size (mum(3)) was 3,344 (801; P < 0.01) in children with asthma, 3,264 (809; P < 0.01) in children with CF, 3,177 (873; P < 0.05) in children with BX, and 1,927 (386) in control subjects. In all disease groups, the volume fraction of ASM in subepithelial tissue was related to myocyte number (asthma: r = 0.84, P < 0.001; CF: r = 0.81, P < 0.01; BX: r = 0.95, P < 0.001), but not to myocyte size. CONCLUSIONS: Increases in ASM (both number and size) occur in children with chronic inflammatory lung diseases that include CF, asthma, and BX.
Resumo:
Supported Cu(II) polymer catalysts were used for the catalytic oxidation of phenol at 30 degrees C and atmospheric pressure using air and H(2)O(2) as oxidants. Heterogenisation of homogeneous Cu(II) catalysts was achieved by adsorption of Cu(II) salts onto polymeric matrices (poly(4-vinylpyridine), Chitosan). The catalytic active sites were represented by Cu(II) ions and showed to conserve their oxidative activity in heterogeneous catalysis as well as in homogeneous systems. The catalytic deactivation was evaluated by quantifying released Cu(II) ions in solution during oxidation, from where Cu-PVP(25) showed the best leaching levels no more than 5 mg L(-1). Results also indicated that Cu-PVP(25) had a catalytic activity (56% of phenol conversion when initial Cu(II) catalytic content was 200 mg L(Reaction)(-1)) comparable to that of commercial catalysts (59% of phenol conversion). Finally, the balance between activity and copper leaching was better represented by Cu-PVP(25) due to the heterogeneous catalytic activity had 86% performance in the heterogeneous phase, and the rest on the homogeneous phase, while Cu-PVP(2) had 59% and CuO/gamma-Al(2)O(3) 68%.
Resumo:
Amorphous carbon has been investigated for a long time. Since it has the random orientation of carbon atoms, its density depends on the position of each carbon atom. It is important to know the density of amorphous carbon to use it for modeling advance carbon materials in the future. Two methods were used to create the initial structures of amorphous carbon. One is the random placement method by randomly locating 100 carbon atoms in a cubic lattice. Another method is the liquid-quench method by using reactive force field (ReaxFF) to rapidly decrease the system of 100 carbon atoms from the melting temperature. Density functional theory (DFT) was used to refine the position of each carbon atom and the dimensions of the boundaries to minimize the ground energy of the structure. The average densities of amorphous carbon structures created by the random placement method and the liquid-quench method are 2.59 and 2.44 g/cm3, respectively. Both densities have a good agreement with previous works. In addition, the final structure of amorphous carbon generated by the liquid-quench method has lower energy.