934 resultados para 3D display systems
Resumo:
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.
Resumo:
We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.
Resumo:
Sistemas Multiagentes estão recebendo cada vez mais a atenção de pesquisadores e desenvolvedores de jogos virtuais. O uso de agentes permite controlar o desempenho do usuário, adaptando a interface e alterando automaticamente o nível de dificuldade das tarefas. Este trabalho descreve uma estratégia de integração de sistemas multiagentes e ambientes virtuais tridimensionais e exemplifica a viabilidade dessa integração através do desenvolvimento de um jogo com características de Serious game. Este jogo visa estimular as funções cognitivas, tais como atenção e memória e é voltado para pessoas portadoras de diferentes distúrbios neuropsiquiátricos. A construção do jogo foi apoiada em um processo de desenvolvimento composto por várias etapas: estudos teóricos sobre as áreas envolvidas, estudo de tecnologias capazes de apoiar essa integração, levantamento de requisitos com especialistas, implementação e avaliação com especialistas. O produto final foi avaliado por especialistas da área médica, que consideraram os resultados como positivos.
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications. © 2009 Optical Society of America.
Resumo:
Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications.
Resumo:
In stereo displays, binocular disparity creates a striking impression of depth. However, such displays present focus cues - blur and accommodation - that specify a different depth than disparity, thereby causing a conflict. This conflict causes several problems including misperception of the 3D layout, difficulty fusing binocular images, and visual fatigue. To address these problems, we developed a display that preserves the advantages of conventional stereo displays, while presenting correct or nearly correct focus cues. In our new stereo display each eye views a display through a lens that switches between four focal distances at very high rate. The switches are synchronized to the display, so focal distance and the distance being simulated on the display are consistent or nearly consistent with one another. Focus cues for points in-between the four focal planes are simulated by using a depth-weighted blending technique. We will describe the design of the new display, discuss the retinal images it forms under various conditions, and describe an experiment that illustrates the effectiveness of the display in maximizing visual performance while minimizing visual fatigue. © 2009 SPIE-IS&T.
Resumo:
Conventional 3D Integral imaging suffers from limited image depth range due to the fixed distance between the display panel and the lens array, while digital Fresnel holography suffers from a narrow viewing angle due to the lack of a high resolution spatial light modulator. This paper proposes an original system which combines the advantages of these two techniques to provide an integral imaging system of a reasonable viewing angle with accommodation cues. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).