966 resultados para [ppm]


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El calentamiento global consiste en el aumento de la temperatura de la tierra debido a la acumulación de los gases de efecto invernadero (GEI) en la atmósfera. Estos gases son producidos por actividades de generación de energía, el transporte, el uso del suelo, la industria y el manejo de los residuos. El aumento de GEI en la atmósfera provoca cambios climáticos e impactos en un sinfín de actividades humanas, en la productividad de la agricultura y ganadería, en la infraestructura y turismo, y también daños en la salud. La comunidad científica considera que el aumento de la temperatura para el fin del siglo debería ubicarse en los 2° C, para de esta forma poder limitar los impactos del cambio climático. Ello implicaría restringir las concentraciones de los GEI en valores cercanos a los 450 ppm (partes por millón). El problema económico del cambio climático subyace en que las emisiones de GEI constituyen una externalidad global. Una externalidad ocurre cuando la producción o consumo de un bien afecta a terceros que no participan directamente en su producción, venta o compra. Cuando hay presencia de externalidades, los precios de mercado no reflejan todos los costos ni beneficios sociales asociados a la producción de un bien. En el caso puntual del cambio climático, los emisores de GEI no asumen el costo de emitir gases a la atmósfera. Existen diferentes instrumentos de política ambiental que influyen en la percepción del recurso ambiental por parte del agente económico y que por ende, se reflejan en las decisiones económicas que ellos toman. Todos ellos tienen por objetivo asignar un precio/costo al recurso ambiental. El objetivo de los mercados de emisiones es asignar un precio al carbono. En ellos, se intercambian derechos a emitir cierta cantidad de GEI. El mecanismo de desarrollo limpio (MDL) es un instrumento de mercado definido en el Acuerdo de Marrakech bajo el marco institucional del Protocolo de Kyoto (PK). El MDL establece que un país Anexo I (país desarrollado), con compromisos de reducción de emisiones, invierta en proyectos de reducción o captación de emisiones en un país No Anexo I (país en desarrollo sin compromisos de reducción), mediante la compra de reducciones certificadas de emisiones (RCEs) generados a partir de la implementación de los proyectos. Argentina ratificó el PK a través de la ley nacional 25.438 en el 2001. Como el país se encuentra comprendido en las Partes No Anexo I, sólo puede participar como país anfitrión de un proyecto MDL y ser oferente de RCEs. Hasta la fecha, Argentina desarrolló 65 proyectos que se encuentran en distinta etapa de aprobación nacional o registro internacional. La mayoría corresponden a proyectos vinculados con rellenos sanitarios y energías. Bajo este marco de desarrollo en el país, resulta valiosa la exploración de un caso implementado en la Argentina. El objetivo de la investigación consiste en analizar el mercado de carbono a través del mecanismo de desarrollo limpio y su implementación en una empresa agroindustrial argentina, Granja Tres Arroyos S.A., bajo el enfoque teórico de la Nueva Economía y los Negocios Agroalimentarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to investigate how the release of fluoride from two compomers and a fluoridated composite resin was affected by exposure to KF solution. MATERIAL AND METHODS: Two compomers (Dyract AP and Compoglass F) and one fluoridated composite (Wave) were prepared as discs (6 mm diameter and 2 mm thick), curing with a standard dental lamp. They were then stored in either water or 0.5% KF for 1 week, followed by placement in water for periods of 1 week up to 5 weeks total. Fluoride was determined with and without TISAB (to allow complexed and decomplexed fluoride to be determined), and other ion release (Na, Ca, Al, Si, P) was determined by ICP-OES. RESULTS: Specimens were found not to take up fluoride from 100 ppm KF solution in 24 h, but to release additional fluoride when stored for up to five weeks. Compomers released more fluoride cumulatively following exposure to KF solution (p<0.001), all of which was decomplexed, though initial (1 week) values were not statistically significant for Dyract AP. Other ions showed no variations in release over 1 week, regardless of whether the specimens were exposed to KF. Unlike the compomers, Wave showed no change in fluoride release as a result of exposure to KF. CONCLUSIONS: Compomers are affected by KF solution, and release more fluoride (but not other ions) after exposure than if stored in water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reviews the means by which fluoride is supplied to populations. Many public health authorities provide fluoridated drinking water, with typical concentrations of fluoride of between 0.5 and 1.0 ppm. This has been found to be safe and effective, though differences in caries incidence between fluoridated and non-fluoridated regions are less than they were 50 years ago, because of the wider availability of fluoridated products to the whole population. Concerns about the effect of fluoride on bone density and associated conditions are reviewed and the general conclusion from considering the literature on fluoride is that there is almost no cause for concern. Alternatives to water as a means of delivering fluoride to the general public that are being used in a number of countries are salt and milk. These alternatives are also reviewed and have been shown to give satisfactory levels of protection against caries, though milk is shown to be less satisfactory than water as a vehicle for fluoride delivery. Milk is also less effective in providing fluoride to individuals in the population, and is less likely to be consumed by people in lower socio-economic groups, precisely those who suffer most from dental caries. This study concludes that mass water fluoridation remains an important contribution to good oral health throughout the community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the start of the industrial revolution (circa 1750) the atmospheric concentration of carbon dioxide (CO2) was around 280 ppm. Since that time the burning of fossil fuel, together with other industrial processes such as cement manufacture and changing land use, has increased this value to 400 ppm, for the first time in over 3 million years. With CO2 being a potent greenhouse gas, the consequence of this rise for global temperatures has been dramatic, and not only for air temperatures. Global Sea Surface Temperature (SST) has warmed by 0.4–0.8 °C during the last century, although regional differences are evident (IPCC, 2007). This rise in atmospheric CO2 levels and the resulting global warming to some extent has been ameliorated by the oceanic uptake of around one quarter of the anthropogenic CO2 emissions (Sabine et al., 2004). Initially this was thought to be having little or no impact on ocean chemistry due to the capacity of the ocean’s carbonate buffering system to neutralise the acidity caused when CO2 dissolves in seawater. However, this assumption was challenged by Caldeira and Wickett (2005) who used model predictions to show that the rate at which carbonate buffering can act was far too slow to moderate significant changes to oceanic chemistry over the next few centuries. Their model predicted that since pre-industrial times, ocean surface water pH had fallen by 0.1 pH unit, indicating a 30% increase in the concentration of H+ ions. Their model also showed that the pH of surface waters could fall by up to 0.4 units before 2100, driven by continued and unabated utilisation of fossil fuels. Alongside increasing levels of dissolved CO2 and H+ (reduced pH) an increase in bicarbonate ions together with a decrease in carbonate ions occurs. These chemical changes are now collectively recognised as “ocean acidification”. Concern now stems from the knowledge that concentrations of H+, CO2, bicarbonate and carbonate ions impact upon many important physiological processes vital to maintaining health and function in marine organisms. Additionally, species have evolved under conditions where the carbonate system has remained relatively stable for millions of years, rendering them with potentially reduced capacity to adapt to this rapid change. Evidence suggests that, whilst the impact of ocean acidification is complex, when considered alongside ocean warming the net effect on the health and productivity of the oceans will be detrimental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An immunohistochemical method using antibodies against polycyclic aromatic hydrocarbons (PAHs) and dioxins was developed on frozen tissue sections of the earthworm Eisenia andrei exposed to environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50 ppm) and 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) (0.01, 0.1, 2 ppb) in spiked standard soils. The concentrations of B[a]P and TCDD in E. andrei exposed to the same conditions were also measured using analytical chemical procedures. The results demonstrated that tissues of worms exposed to even minimal amount of B[a]P and TCDD reacted positively and specifically to anti-PAHs and -dioxins antibody. Immunofluorescence revealed a much more intense staining for the gut compared to the body wall; moreover, positively immunoreactive amoeboid coelomocytes were also observed, i.e. cells in which we have previously demonstrated the occurrence of genotoxic damage. The double immunolabelling with antibodies against B[a]P/TCDD and the lysosomal enzyme cathepsin D demonstrated the lysosomal accumulation of the organic xenobiotic compounds, in particular in the cells of the chloragogenous tissue as well as in coelomocytes, involved into detoxification and protection of animals against toxic chemicals. The method described is timesaving, not expensive and easily applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).