909 resultados para wire rope
Resumo:
Rigging screw tensioners to balustrade wire, central deck (North-East elevation).
Resumo:
Curved steel and stainless steel wire balustrade to central deck area (North-East elevation).
Resumo:
Turbulent free jets issuing from rectangular slots with various high aspect ratios (15-120) are characterized. The centerline mean and rms velocities are measured using hot-wire anemometry over a downstream distance of up to 160 slot heights at a slot-height-based Reynolds number of 10000. Experimental results suggest that a rectangular jet with sufficiently high aspect ratio (> 15) may be distinguished between three flow zones: an initial quasi-plane-jet zone, a transition zone, and a final quasi-axisymmetric-jet zone. In the quasi-plane-jet zone, the turbulent velocity field is statistically similar, but not identical, to those of a plane jet. (c) 2005 American Institute of Physics.
Resumo:
A novel three-axis gradient set and RF resonator for orthopedic MRT has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an are of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 mu s, conforming closely with theoretical predictions. Preliminary images from the set are presented. (C) 1999 Academic Press.
Resumo:
There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,
Resumo:
The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by noise since no certain method has previously been available to optimally filter noise from the measured signals. This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous velocity measured in a turbulent jet.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Resumo:
Study Design: Fine-wire EMG rotator cuff onset time analysis in 2 matched groups of throwers with and without pain. Objective: To identify if there is a difference in the activation patterns of the rotator cuff muscles during a rapid shoulder external rotation task between throwers with and without pain. Background: The coordinated action of the rotator cuff is recognized as essential for glenohumeral joint control in the throwing athlete. Identification of abnormalities occurring in muscle activation patterns for injured athletes is relevant when prescribing rehabilitative exercises. Methods and Measures: Twelve throwers with shoulder pain were compared to a matched group of 11 asymptomatic throwers. Participants were matched for age, height, body mass, and habitual activity. Fine-wire EMG electrodes were inserted into the subscapularis, supraspinatus, and infraspinatus. EMG activity was measured during a reaction time task of rapid shoulder external rotation in a seated position. The timing of onset of EMG activity was analyzed in relation to visualization of a light (reaction time) and to the onset of infraspinatus activity (relative latency). Results: In the group with shoulder pain, the onset of subscapularis activity was found to be significantly delayed (reaction time, P = .0018; relative latency, P = .0005) from the onset of infraspinatus activity when compared to the control group. Conclusions: The presence of shoulder pain in these athletes was associated with a difference in the onset of subscapularis EMG activity during a rapid shoulder external rotation movement. This was an initial step in the understanding of the joint protection mechanisms of the glenohumeral joint and the problems that occur in throwers. This information may assist in providing future guidelines for more effective rehabilitation and prevention strategies for this condition.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
Because the structure of the spine is inherently unstable, muscle activation is essential for the maintenance of trunk posture and intervertebral control when the limbs are moved. To investigate how the central nervous system deals with this situation the temporal components of the response of the muscles of the trunk were evaluated during rapid limb movement performed in response to a visual stimulus. Fine-wire electromyography (EMG) electrodes were inserted into transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) of 15 subjects under the guidance of real-time ultrasound imaging. Surface electrodes were placed over rectus abdominis (RA), lumbar multifidus (MF) and the three parts of deltoid. In a standing position, ten repetitions of shoulder flexion, abduction and extension were performed by the subjects as fast as possible in response to a visual stimulus. The onset of TrA EMG occurred in advance of deltoid irrespective of the movement direction. The time to onset of EMC activity of OI, OE, RA and MF varied with the movement direction, being activated earliest when the prime action of the muscle opposed the reactive forces associated with the specific limb movement. It is postulated that the non-direction-specific contraction of TrA may be related to the control of trunk. stability independent of the requirement for direction-specific control of the centre of gravity in relation to the base of support.
Resumo:
Rapid shoulder movement is preceded by contraction of the abdominal muscles to prepare the body for the expected disturbance to postural equilibrium and spinal stability provoked by the reactive forces resulting from the movement. The magnitude of the reactive forces is proportional to the inertia of the limb. The aim of the study was to investigate if changes in the reaction time latency of the abdominal muscles was associated with variation in the magnitude of the reactive forces resulting from variation in limb speed. Fifteen participants performed shoulder flexion at three different speeds (fast, natural and slow). The onset of EMG of the abdominal muscles, erector spinae and anterior deltoid (AD) was recorded using a combination of fine-wire and surface electrodes. Mean and peak velocity was recorded for each limb movement speed for five participants. The onset of transversus abdominis (TrA) EMG preceded the onset of AD in only the fast movement condition. No significant difference in reaction time latency was recorded between the fast and natural speed conditions for all muscles. The reaction time of each of the abdominal muscles relative to AD was significantly delayed with the slow movement compared to the other two speeds. The results indicate that the reaction time latency of the trunk muscles is influenced by limb inertia only with limb movement below a threshold velocity.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.
Resumo:
An analyzer-based X-ray phase-contrast imaging (ABI) setup has been mounted at the Brazilian Synchrotron Light Laboratory (LNLS) for multiple imaging radiography (MIR) purposes. The algorithm employed for treating the MIR data collected at LNLS is described, and its reliability in extracting the distinct types of contrast that can be obtained with MIR is demonstrated by analyzing a test sample (thin polyamide wire). As a practical application, the possibility of studying ophthalmic tissues, corneal sequestra in this case, via MIR is investigated. (C) 2007 Elsevier B.V. All rights reserved.