1000 resultados para virtual microscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an editorial introduction for a virtual edition focused on neoliberalism in educational sectors for the journal, "Critical Studies in Education". The introduction outlines the nature and progress of neoliberalism, then reviews the selected articles from the journal's archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the dispute between the Seattle company Virtual Countries Inc. and the Republic of South Africa over the ownership of the domain name address southafrica.com. The first part of the paper deals with the pre-emptive litigation taken by Virtual Countries Inc. in a District Court of the United States. The second part considers the possible arbitration of the dispute under the Uniform Domain Name Dispute Resolution Process of the Internet Corporation for Assigned Names and Numbers (ICANN) and examines the wider implications of this dispute for the jurisdiction and the governance of ICANN. The final section of the paper evaluates the Final Report of the Second WIPO Internet Domain Name Process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the time students reach the middle years they have experienced many chance activities based on dice. Common among these are rolling one die to explore the relationship of frequency and theoretical probability, and rolling two dice and summing the outcomes to consider their probabilities. Although dice may be considered overused by some, the advantage they offer is a familiar context within which to explore much more complex concepts. If the basic chance mechanism of the device is understood, it is possible to enter quickly into an arena of more complex concepts. This is what happened with a two hour activity engaged in by four classes of Grade 6 students in the same school. The activity targeted the concepts of variation and expectation. The teachers held extended discussions with their classes on variation and expectation at the beginning of the activity, with students contributing examples of the two concepts from their own experience. These notions are quite sophisticated for Grade 6, but the underlying concepts describe phenomena that students encounter every day. For example, time varies continuously; sporting results vary from game to game; the maximum temperature varies from day to day. However, there is an expectation about tomorrow’s maximum temperature based on the expert advice from the weather bureau. There may also be an expectation about a sporting result based on the participants’ previous results. It is this juxtaposition that makes life interesting. Variation hence describes the differences we see in phenomena around us. In a scenario displaying variation, expectation describes the effort to characterise or summarise the variation and perhaps make a prediction about the message arising from the scenario. The explicit purpose of the activity described here was to use the familiar scenario of rolling a die to expose these two concepts. Because the students had previously experienced rolling physical dice they knew instinctively about the variation that occurs across many rolls and about the theoretical expectation that each side should “come up” one-sixth of the time. They had observed the instances of the concepts in action, but had not consolidated the underlying terminology to describe it. As the two concepts are so fundamental to understanding statistics, we felt it would be useful to begin building in the familiar environment of rolling a die. Because hand-held dice limit the explorations students can undertake, the classes used the soft-ware TinkerPlots (Konold & Miller, 2011) to simulate rolling a die multiple times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Educating responsive graduates. Graduate competencies include reliability, communication skills and ability to work in teams. Students using Collaborative technologies adapt to a new working environment, working in teams and using collaborative technologies for learning. Collaborative Technologies were used not simply for delivery of learning but innovatively to supplement and enrich research-based learning, providing a space for active engagement and interaction with resources and team. This promotes the development of responsive ‘intellectual producers’, able to effectively communicate, collaborate and negotiate in complex work environments. Exploiting technologies. Students use ‘new’ technologies to work collaboratively, allowing them to experience the reality of distributed workplaces incorporating both flexibility and ‘real’ time responsiveness. Students are responsible and accountable for individual and group work contributions in a highly transparent and readily accessible workspace. This experience provides a model of an effective learning tool. Navigating uncertainty and complexity. Collaborative technologies allows students to develop critical thinking and reflective skills as they develop a group product. In this forum students build resilience by taking ownership and managing group work, and navigating the uncertainties and complexities of group dynamics as they constructively and professionally engage in team dialogue and learn to focus on the goal of the team task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale deformation in the tribolayer of an Al–Mg alloy is studied using an in situ mechanical probe in a transmission electron microscope. The sample is strained locally at room temperature and the deformation is observed in real time. It is observed that when the tungsten probe comes into contact with the tribolayer, the material exhibits further hardening followed by material removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecology of the uncultured, but large and morphologically conspicuous, rumen bacterium Oscillospira spp. was studied. Oscillospira-specific 16S rRNA gene sequences were detected in North American domestic cattle, sheep from Australia and Japan, and Norwegian reindeer. Phylogenetic analysis of the sequences obtained allowed definition of three operational taxonomic units within the Oscillospira clade. Consistent with this genetic diversity, we observed atypical smaller morphotypes by using an Oscillospira-specific fluorescence in situ hybridization probe. Despite the visual disappearance of typical large Oscillospira morphotypes, the presence of Oscillospira spp. was still detected by Oscillospira-specific PCR in the rumen of cattle and sheep. These observations suggest the broad presence of Oscillospira species in various rumen ecosystems with the level, and most likely the morphological form, dependent on diet. An ecological analysis based on enumeration of the morphologically conspicuous, large-septate form confirms that the highest counts are associated with the feeding of fresh forage diets to cattle and sheep and in two different subspecies of reindeer investigated.