931 resultados para two-dimensional soliton


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/GaN heterostructures have been irradiated by neutrons with different influences and characterized by means of temperature-dependent Hall measurements and Micro-Raman scattering techniques. It is found that the carrier mobility of two-dimensional electron gas (2DEG) is very sensitive to neutrons. At a low influence of 6.13 x 10(15) cm(-2), the carrier mobility drops sharply, while the sheet carrier density remains the same as that of an unirradiated sample. Moreover, even for a fluence of up to 3.66 x 10(16) cm(-2), the sheet carrier density shows only a slight drop. We attribute the degradation of the figure-of-merit (product of n(s) x mu) of 2DEG to the defects induced by neutron irradiation. Raman measurements show that neutron irradiation does not yield obvious change to the strain state of AlGaN/GaN heterostructures, which proves that degradation of sheet carrier density has no relation to strain relaxation in the present study. The increase of the product of n(s) x mu of 2DEG during rapid thermal annealing processes at relatively high temperature has been attributed to the activation of Ge-Ga transmuted from Ga and the recovery of displaced defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown theoretically that the propagation of plasmons can be tuned by an external electric field via spin-orbit interactions in a two-dimensional electron gas formed in a semiconductor heterostructure. This may provide a manageable way of transmitting quantum information in a quantum device. A possible plasmon field effect transistor is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically study the spatial behaviors of the spin precession in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field in the system, we obtain the general conditions to generate a persistent spin helix and predict a persistent spin helix pattern in [001]-grown quantum wells. Particularly, we demonstrate that the phase of spin can be locked to propagate in a quantum well with SU(2) symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T-2(*)) of electrons decreases monotonically with increasing magnetic field, it has a nonmonotonic dependence on the temperature and reaches a peak value of 596 ps at 36 K, indicating the effect of intersubband electron-electron scattering on the electron-spin relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work discusses the fabrication of two-dimensional photonic crystal mask layer patterns. Photonic crystal patterns having holes with smooth and straight sidewalls are achieved by optimizing electron beam exposure doses during electron beam lithography process. Thereafter, to precisely transfer the patterns from the beam resist to the SiO2 mask layer, we developed a pulse-time etching method and optimize various reaction ion etching conditions. Results show that we can obtain high quality two-dimensional photonic crystal mask layer patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the Rashba SOC and the temperature. It is found that the sawtooth-like de Haas-van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.