909 resultados para supramolecular architectures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we demonstrate that a substitution type of the pyrene in short amphiphilic oligomers determines a morphology of the assemblies formed. Thus, 1.6- and 2.7-linkages lead to a formation of micrometer-sized 2D supromolecular polymers with a constant thickness 2 nm (pictures A and B). These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long nanometer thick helical supramolecular polymers (picturee C). These structures tend to form even more complex assemblies (bundles, superhelixes). Moreover, for all samples the polymerization process occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular assembly of π-conjugated systems is of large interested due to the possibility to use them in electronic devices.[1] Chrysene is a polyaromatic hydrocarbon which has been studied e.g for organic light-emitting diodes (OLEDs).[2] In continuation of our previous work involving the supramolecular polymerisation of pyrene oligomers [3] an oligomer consisting of three chrysenes linked by phophodiesters was synthesised (Chry3). UV-Vis measurements show that aggregates of Chry3 are formed in aqueous medium. This is illustrated by general hypochromicity, a change in vibronic band intensities and, in particular, the appearance of a red-shifted absorption band in the S0 → S2 transition. The data suggest the formation of J-aggregates. The formation of supramolecular polymers is further studied by temperature-dependent absorption- and fluorescence measurements, and by atomic force microscopy (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5′-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py3) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5 Hz, 30 rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser ablation/ionisation mass spectrometry with a vertical resolution at a nanometre scale was applied for the quantitative characterisation of the chemical composition of additive-assisted Cu electroplated deposits used in the microchip industry. The detailed chemical analysis complements information gathered by optical techniques and allows new insights into the metal deposition process.