955 resultados para solution synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en: 21st World Hydrogen Energy Conference 2016. Zaragoza, Spain. 13-16th June, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordinary Portland cement (OPC) is an environmentally contentious material, as for every ton of OPC produced, on average, 0.97 tons of CO2 are released. Ye'elimite-rich cements are considered as eco-cements because their manufacturing process releases less CO2 into the atmosphere than OPC; this is due to the low calcite demand. Belite-Alite-Ye’elimite (BAY) cements are promising eco-friendly building materials as OPC substitutes at a large scale. The reaction of alite and ye´elimite with water should develop cements with high mechanical strengths at early ages, while belite will contribute to later curing times. However, they develop lower mechanical strengths at early-medium ages than OPC. It is known that the presence of different polymorphs of ye'elimite and belite affects the hydration due to the different reactivity of those phases. Thus, a solution to this problem may be well the activation of BAY clinkers by preparing them with 'H-belite and pseudo-cubic-ye'elimite, jointly with alite. The aim of this work is the preparation and characterization of active-BAY clinkers which contain high percentages of coexisting 'H-belite and pseudo-cubic-ye'elimite, jointly with alite to develop, in a future step, comparable mechanical strengths to OPC. The parameters evolved in the preparation of the clinker have been optimized, including the selection of raw materials (mineralizers and activators) and clinkering conditions. Finally, the clinker was characterized through laboratory X-ray powder diffraction, in combination with the Rietveld methodology, and scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene-based nanomaterials are a kind of new technological materials with high interest for physicists, chemists and materials scientists. Graphene is a two-dimensional (2-D) sheet of carbon atoms in a hexagonal configuration with atoms bonded by sp2 bonds. These bonds and this electron configuration provides the extraordinary properties of graphene, such as very large surface area, a tunable band gap, high mechanical strength and high elasticity and thermal conductivity [1]. Graphene has also been investigated for preparation of composites with various semiconductors like TiO2, ZnO, CdS aiming at enhanced photocatalytic activity for their use for photochemical reaction as water splitting or CO2 to methanol conversion [2-3]. In this communication, the synthesis of porous graphene@TiO2 obtained from a powder graphite recycled, supplied by ECOPIBA, is presented. This graphite was exfoliated, using a nonionic surfactant (Triton X-100) and sonication. Titanium(IV) isopropoxide was used as TiO2 source. After removing the surfactant with a solution HCl/n-propanol, a porous solid is obtained with a specific area of 358 m2g-1. The solid was characterized by XRD, FTIR, XPS, EDX and TEM. Figure 1 shows the graphene 2D layer bonded with nanoparticles of TiO2. When a water suspension of this material is exposed with UV-vis radiation, water splitting reaction is carried out and H2/O2 bubbles are observed (Figure 2)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fulgides and fulgimides are important organic photochromic compounds and can switch between the open forms and the closed forms with light. The 3-indolylfulgides and 3-indolylfulgimides exhibit promising photochromic properties and have great potential in optical memory devices, optical switches and biosensors. Copolymers containing 3-indolylfulgides/indolylfulgimides synthesized via free radical polymerizations increase conformation changes and allow the photochromic compounds to be uniformly distributed in the polymer matrix. A trifluoromethyl 3-indolylfulgide and two trifluoromethyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization with methyl methacrylate provided two linear copolymers or a cross-linked copolymer. The properties of the monomeric fulgide/fulgimides and copolymers in toluene or as thin films were characterized. In general, the photochromic monomers and copolymers revealed similar photochromic properties and exhibited good thermal and photochemical stability. All compounds absorb visible light in both open forms and closed forms. The closed form copolymers were more stable than the open form copolymers and showed little or no degradation after 400 h. The photochemical degradation rate was less than 0.03% per cycle. In films, conformational restrictions were observed for the open forms suggesting that the preparation of films from the closed forms is advantageous. Two novel methyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization of acrylamide with the methyl indolylfulgimides or the trifluoromethyl indolylfulgimides yielded two aqueous soluble linear copolymers and two photochromic hydrogels. The closed form copolymers containing trifluoromethyl indolylfulgimides were hydrolyzed in aqueous solution by replacing the trifluoromethyl group with a carboxylic acid group. The resulting carboxylic copolymers were also photochromic. The copolymers containing methyl fulgimides were stable in aqueous solutions and did not hydrolyze. Both methyl and carboxylic copolymers exhibited good stability in aqueous solutions. In general, the open form copolymers were more stable than the closed form copolymers, and the copolymers revealed better stability in acidic solution than neutral solution. The linear copolymers displayed better photochemical stability in neutral solution and degraded up to 22% after 105 cycles. In contrast, the hydrogels showed enhanced fatigue resistance in acidic condition and underwent up to 60 cycles before degrading 24%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax®2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax®2533 was also chemically modified, obtaining the product called “Benzoyl-P2533”, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we developed three copper-containing systems. Copper shows intriguing abilities in photocatalysis, however, one of the major limitations of many copper complexes is that photochemical properties might be quenched in solution caused by π-interactions between solvent and solute, due to Jahn-Teller distortion in the excited state. As such, we herein seek to synthesise copper heteroleptic complexes that will subsequently be nanoprecipitated with a polymer. This will allow the polymer to encase the complex and prevent the solvent-induced quenching. Subsequently, the preparation of blends of polymer with the aforementioned copper complexes, at different weight ratios is sought. The preparation of the blend is particularly interesting as the catalytic properties are anticipated to be inferior on account of the low surface area. However, owing to the polymer matrix better, mechanical properties are anticipated. The blends can combine the mechanical properties of the polymer and the luminescence of the complex, with the advantage that the polymer matrix can also prevent quenching from oxygen. As final task, we developed a copper-containing monomer. The synthesis of a monomer that contains copper and can be excited under ultraviolet (UV) light is particularly interesting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium manganese hexacyanoferrate (NaMnHCF) and its derivatives have been synthesized by simple co-precipitation method with addition of the citric and ascorbic acids respectively. The correspondent crystal structure, water content, chemical formula and a deep structural investigation of prepared samples have been performed by means of the combination of the laboratory and synchrotron techniques (PXRD, FT-IR, TGA, MP-AES and XAS). Electrochemical tests have been done using three-electrode system in sodium nitrate solution at different concentration. From cyclic voltammetry curves, Fe3+/2+ redox peak has been observed, whereas Mn3+/2+ peak was not always evident. Structural stability of the cycled samples has then been tested using 2D XRF imaging and Transmission X-ray microscopy (TXM) techniques. The intercalation of NaMnHCF after 20 cycles has been found by micro-XANES analysis of the highlighted spots which have been found in the XRF images. TXM has also confirmed the appearance of the intercalated particles after 50 cycles comparing the spectra between charged and discharged materials at three different edges (Mn, Fe and N). However, by comparison with lithium samples, it seems obvious that sodium samples are more homogeneous and intercalation is at the very beginning indicating the relative structural stability of sodium manganese hexacyanoferrate electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the limited resources of lithium, new chemistries based on the abundant and cheap sodium and even zinc have been proposed for the battery market. Prussian Blue Analogues (PBAs) are a class of compounds which have been explored for many different applications because of their intriguing electrochemical and magnetic properties. Manganese and titanium hexacyanoferrate (MnHCF and TiHCF) belong to the class of PBAs. In this work, MnHCF and TiHCF electrodes were synthetized, cycled with cyclic voltammetry (CV) in different setups and subsequently, the surfaces were characterized with X-ray Photoelectron Spectroscopy (XPS). The setups chosen for CVs were coin cell with zinc aqueous solution for the MnHCF series, three-electrode cell and symmetric coin cell with sodium aqueous solution for the TiHCF series. The electrodes were treated with different number of cycles to evaluate the chemical changes and alterations in oxidation states during cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My PhD research focused on the development of environmentally sustainable methods for peptide synthesis. The traditional and toxic solvents and bases used in solid-phase peptide synthesis (SPPS) were replaced with eco-friendly alternatives to reduce the environmental impact. In particular, N-octylpyrrolidone was found to be an effective green solvent in combination with dimethyl carbonate, resulting in a 63-66% reduction in process mass intensity (PMI). In addition, a green base, DEAPA, was identified for Fmoc removal, which showed comparable results to piperidine, while being less regulated and toxic, and able to better control aspartimide-related side reactions. The study extended beyond SPPS to explore liquid-phase peptide synthesis (LPPS) and solution-phase peptide synthesis (SolPPS) using propylphosphonic anhydride (T3P®) as a coupling reagent. The developed green SolPPS using Cbz amino acids achieved exceptional efficiency, minimal racemisation and a PMI of 30 to introduce a single amino acid in the iterative process. This PMI value is the lowest ever reported for an oligopeptide synthesis protocol. This technique was extended to N-Boc amino acids in DCM, requiring aqueous workups and achieving 95% purity of Leu-Enkephalin. Finally, T3P® was found to be suitable for LPPS. An anchor, mimicking a resin, was used to allow precipitation or solubilisation of the growing anchored-peptide, depending on the polarity of the solvent used. Anisole and DCM resulted in a pentapeptide purity of over 95%. While at Oxford University, I synthesized a cleavable fragment that is sensitive to cathepsin B (CatB) and incorporated it into a cyclic antisense oligonucleotide (ASO) targeting the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ASO demonstrated good stability in a simulated in vivo environment using human serum and high affinity with complementary RNA. The Cyclic-ASO was opened by CatB in optimal conditions. Experiments highlight therapeutic potential and a novel method for controlling cyclic oligonucleotide activity, potentially enhancing cellular uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geopolymers are solid aluminosilicate material made by mixing an activating solution and a solid precursor. This work studied the mechanisms of synthesis of metakaolin-based geopolymers and the influence of water content, described by the molar ratio H2O/Na2O, on the final product. The samples were tested using a Uniaxial Compressive Test (UCT) to define their compressive resistance. Two geopolymers series were synthetized and let them rest for 7- days and 28-days, each of them composed by six different sets. 7-day rest series showed that water addition had no relevant effect over its resistance while the 28-day rest series almost doubled the compressive resistance, although those with the highest H2O/Na2O molar ratio showed instead a drastic reduction. Two other series were synthesized by adding silt aggregate, a waste material obtained in the production of aggregate for concrete, corresponding to 10wt% and 20wt%of the metakaolin used. After 28 days of aging, these samples were tested via UCT to measure the variation of the compressive resistance after the silt addition. The aggregate has disruptive effects over the compressive resistance, but the 20wt% samples achieved a higher compressive resistance. Samples with highest and lowest compressive resistance have been chosen to carry out an XRD analysis. In all the samples it has been recognized the presence of Anatase (TiO2), a titanium oxide found in the metakaolin and Thermonatrite, a hydrated sodium carbonate [Na2CO3 • (H2O)]. Scanning Electron Microscopy was carried out on the samples with the highest compressive resistance and showed that the samples with lower water content developed a homogeneous geopolymeric texture, while those with higher water content showed instead a spongy-like texture and a higher air or pore solution bubbles presence. Silt/geopolymer composites showed a fracture system developing across the interstitial transition zone between the geopolymer matrix and the aggregate particle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural scene representation and neural rendering are new computer vision techniques that enable the reconstruction and implicit representation of real 3D scenes from a set of 2D captured images, by fitting a deep neural network. The trained network can then be used to render novel views of the scene. A recent work in this field, Neural Radiance Fields (NeRF), presented a state-of-the-art approach, which uses a simple Multilayer Perceptron (MLP) to generate photo-realistic RGB images of a scene from arbitrary viewpoints. However, NeRF does not model any light interaction with the fitted scene; therefore, despite producing compelling results for the view synthesis task, it does not provide a solution for relighting. In this work, we propose a new architecture to enable relighting capabilities in NeRF-based representations and we introduce a new real-world dataset to train and evaluate such a model. Our method demonstrates the ability to perform realistic rendering of novel views under arbitrary lighting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac arrest during heart surgery is a common procedure and allows the surgeon to perform surgical procedures in an environment free of blood and movement. Using a model of isolated rat heart, the authors compare a new cardioplegic solution containing histidine-tryptophan-glutamate (group 2) with the histidine-tryptophan-alphacetoglutarate (group 1) routinely used by some cardiac surgeons. To assess caspase, IL-8 and KI-67 in isolated rat hearts using immunohistochemistry. 20 Wistar male rats were anesthetized and heparinized. The chest was opened, cardioctomy was performed and 40 ml/kg of the appropriate cardioplegic solution was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter, placed in the Langendorff apparatus for 30 minutes with Ringer-Locke solution. Immunohistochemistry analysis of caspase, IL-8, and KI-67 were performed. The concentration of caspase was lower in group 2 and Ki-67 was higher in group 2, both P<0.05. There was no statistical difference between the values of IL-8 between the groups. Histidine-tryptophan-glutamate solution was better than histidine-tryptophan-alphacetoglutarate solution because it reduced caspase (apoptosis), increased KI-67 (cell proliferation), and showed no difference in IL-8 levels compared to group 1. This suggests that the histidine-tryptophan-glutamate solution was more efficient than the histidine-tryptophan-alphacetoglutarate for the preservation of hearts of rat cardiomyocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.