970 resultados para sampling methods
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
Double-observer line transect methods are becoming increasingly widespread, especially for the estimation of marine mammal abundance from aerial and shipboard surveys when detection of animals on the line is uncertain. The resulting data supplement conventional distance sampling data with two-sample mark–recapture data. Like conventional mark–recapture data, these have inherent problems for estimating abundance in the presence of heterogeneity. Unlike conventional mark–recapture methods, line transect methods use knowledge of the distribution of a covariate, which affects detection probability (namely, distance from the transect line) in inference. This knowledge can be used to diagnose unmodeled heterogeneity in the mark–recapture component of the data. By modeling the covariance in detection probabilities with distance, we show how the estimation problem can be formulated in terms of different levels of independence. At one extreme, full independence is assumed, as in the Petersen estimator (which does not use distance data); at the other extreme, independence only occurs in the limit as detection probability tends to one. Between the two extremes, there is a range of models, including those currently in common use, which have intermediate levels of independence. We show how this framework can be used to provide more reliable analysis of double-observer line transect data. We test the methods by simulation, and by analysis of a dataset for which true abundance is known. We illustrate the approach through analysis of minke whale sightings data from the North Sea and adjacent waters.
Resumo:
Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.
Resumo:
Abstract Background Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. Methods We measured NO2 using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. Results Average NO2 concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO2concentrations were 63μg/m3 and 49μg/m3 in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m3 (95% CI: 59μg/m3 – 68μg/m3); local traffic (n = 16): 48μg/m3 (95% CI: 44μg/m3 – 52μg/m3) (p < 0.001). Conclusion The differences in NO2 levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available.
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.
Resumo:
This thesis covers sampling and analytical procedures for isocyanates (R-NCO) and amines (R-NH2), two kinds of chemicals frequently used in association with the polymeric material polyurethane (PUR). Exposure to isocyanates may result in respiratory disorders and dermal sensitisation, and they are one of the main causes of occupational asthma. Several of the aromatic diamines associated with PUR production are classified as suspected carcinogens. Hence, the presence of these chemicals in different exposure situations must be monitored. In the context of determining isocyanates in air, the methodologies included derivatisation with the reagent di-n-butylamine (DBA) upon collection and subsequent determination using liquid chromatography (LC) and mass spectrometric detection (MS). A user-friendly solvent-free sampler for collection of airborne isocyanates was developed as an alternative to a more cumbersome impinger-filter sampling technique. The combination of the DBA reagent together with MS detection techniques revealed several new exposure situations for isocyanates, such as isocyanic acid during thermal degradation of PUR and urea-based resins. Further, a method for characterising isocyanates in technical products used in the production of PUR was developed. This enabled determination of isocyanates in air for which pure analytical standards are missing. Tandem MS (MS/MS) determination of isocyanates in air below 10-6 of the threshold limit values was achieved. As for the determination of amines, the analytical methods included derivatisation into pentafluoropropionic amide or ethyl carbamate ester derivatives and subsequent MS analysis. Several amines in biological fluids, as markers of exposure for either the amines themselves or the corresponding isocyanates, were determined by LC-MS/MS at amol level. In aqueous extraction solutions of flexible PUR foam products, toluene diamine and related compounds were found. In conclusion, this thesis demonstrates the usefulness of well characterised analytical procedures and techniques for determination of hazardous compounds. Without reliable and robust methodologies there is a risk that exposure levels will be underestimated or, even worse, that relevant compounds will be completely missed.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
In this study a new, fully non-linear, approach to Local Earthquake Tomography is presented. Local Earthquakes Tomography (LET) is a non-linear inversion problem that allows the joint determination of earthquakes parameters and velocity structure from arrival times of waves generated by local sources. Since the early developments of seismic tomography several inversion methods have been developed to solve this problem in a linearized way. In the framework of Monte Carlo sampling, we developed a new code based on the Reversible Jump Markov Chain Monte Carlo sampling method (Rj-McMc). It is a trans-dimensional approach in which the number of unknowns, and thus the model parameterization, is treated as one of the unknowns. I show that our new code allows overcoming major limitations of linearized tomography, opening a new perspective in seismic imaging. Synthetic tests demonstrate that our algorithm is able to produce a robust and reliable tomography without the need to make subjective a-priori assumptions about starting models and parameterization. Moreover it provides a more accurate estimate of uncertainties about the model parameters. Therefore, it is very suitable for investigating the velocity structure in regions that lack of accurate a-priori information. Synthetic tests also reveal that the lack of any regularization constraints allows extracting more information from the observed data and that the velocity structure can be detected also in regions where the density of rays is low and standard linearized codes fails. I also present high-resolution Vp and Vp/Vs models in two widespread investigated regions: the Parkfield segment of the San Andreas Fault (California, USA) and the area around the Alto Tiberina fault (Umbria-Marche, Italy). In both the cases, the models obtained with our code show a substantial improvement in the data fit, if compared with the models obtained from the same data set with the linearized inversion codes.
Resumo:
In this work, new tools in atmospheric pollutant sampling and analysis were applied in order to go deeper in source apportionment study. The project was developed mainly by the study of atmospheric emission sources in a suburban area influenced by a municipal solid waste incinerator (MSWI), a medium-sized coastal tourist town and a motorway. Two main research lines were followed. For what concerns the first line, the potentiality of the use of PM samplers coupled with a wind select sensor was assessed. Results showed that they may be a valid support in source apportionment studies. However, meteorological and territorial conditions could strongly affect the results. Moreover, new markers were investigated, particularly focusing on the processes of biomass burning. OC revealed a good biomass combustion process indicator, as well as all determined organic compounds. Among metals, lead and aluminium are well related to the biomass combustion. Surprisingly PM was not enriched of potassium during bonfire event. The second research line consists on the application of Positive Matrix factorization (PMF), a new statistical tool in data analysis. This new technique was applied to datasets which refer to different time resolution data. PMF application to atmospheric deposition fluxes identified six main sources affecting the area. The incinerator’s relative contribution seemed to be negligible. PMF analysis was then applied to PM2.5 collected with samplers coupled with a wind select sensor. The higher number of determined environmental indicators allowed to obtain more detailed results on the sources affecting the area. Vehicular traffic revealed the source of greatest concern for the study area. Also in this case, incinerator’s relative contribution seemed to be negligible. Finally, the application of PMF analysis to hourly aerosol data demonstrated that the higher the temporal resolution of the data was, the more the source profiles were close to the real one.
Resumo:
This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.
Resumo:
In den vergangenen Jahren wurden einige bislang unbekannte Phänomene experimentell beobachtet, wie etwa die Existenz unterschiedlicher Prä-Nukleations-Strukturen. Diese haben zu einem neuen Verständnis von Prozessen, die auf molekularer Ebene während der Nukleation und dem Wachstum von Kristallen auftreten, beigetragen. Die Auswirkungen solcher Prä-Nukleations-Strukturen auf den Prozess der Biomineralisation sind noch nicht hinreichend verstanden. Die Mechanismen, mittels derer biomolekulare Modifikatoren, wie Peptide, mit Prä-Nukleations-Strukturen interagieren und somit den Nukleationsprozess von Mineralen beeinflussen könnten, sind vielfältig. Molekulare Simulationen sind zur Analyse der Formation von Prä-Nukleations-Strukturen in Anwesenheit von Modifikatoren gut geeignet. Die vorliegende Arbeit beschreibt einen Ansatz zur Analyse der Interaktion von Peptiden mit den in Lösung befindlichen Bestandteilen der entstehenden Kristalle mit Hilfe von Molekular-Dynamik Simulationen.rnUm informative Simulationen zu ermöglichen, wurde in einem ersten Schritt die Qualität bestehender Kraftfelder im Hinblick auf die Beschreibung von mit Calciumionen interagierenden Oligoglutamaten in wässrigen Lösungen untersucht. Es zeigte sich, dass große Unstimmigkeiten zwischen etablierten Kraftfeldern bestehen, und dass keines der untersuchten Kraftfelder eine realistische Beschreibung der Ionen-Paarung dieser komplexen Ionen widerspiegelte. Daher wurde eine Strategie zur Optimierung bestehender biomolekularer Kraftfelder in dieser Hinsicht entwickelt. Relativ geringe Veränderungen der auf die Ionen–Peptid van-der-Waals-Wechselwirkungen bezogenen Parameter reichten aus, um ein verlässliches Modell für das untersuchte System zu erzielen. rnDas umfassende Sampling des Phasenraumes der Systeme stellt aufgrund der zahlreichen Freiheitsgrade und der starken Interaktionen zwischen Calciumionen und Glutamat in Lösung eine besondere Herausforderung dar. Daher wurde die Methode der Biasing Potential Replica Exchange Molekular-Dynamik Simulationen im Hinblick auf das Sampling von Oligoglutamaten justiert und es erfolgte die Simulation von Peptiden verschiedener Kettenlängen in Anwesenheit von Calciumionen. Mit Hilfe der Sketch-Map Analyse konnten im Rahmen der Simulationen zahlreiche stabile Ionen-Peptid-Komplexe identifiziert werden, welche die Formation von Prä-Nukleations-Strukturen beeinflussen könnten. Abhängig von der Kettenlänge des Peptids weisen diese Komplexe charakteristische Abstände zwischen den Calciumionen auf. Diese ähneln einigen Abständen zwischen den Calciumionen in jenen Phasen von Calcium-Oxalat Kristallen, die in Anwesenheit von Oligoglutamaten gewachsen sind. Die Analogie der Abstände zwischen Calciumionen in gelösten Ionen-Peptid-Komplexen und in Calcium-Oxalat Kristallen könnte auf die Bedeutung von Ionen-Peptid-Komplexen im Prozess der Nukleation und des Wachstums von Biomineralen hindeuten und stellt einen möglichen Erklärungsansatz für die Fähigkeit von Oligoglutamaten zur Beeinflussung der Phase des sich formierenden Kristalls dar, die experimentell beobachtet wurde.