971 resultados para radiation treatment margins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We evaluated treatment patterns of elderly patients with stage IIIA (N2) non-small-cell lung cancer (NSCLC). METHODS: The use of surgery, chemotherapy, and radiation for patients with stage IIIA (T1-T3N2M0) NSCLC in the Surveillance, Epidemiology, and End Results-Medicare database from 2004 to 2007 was analyzed. Treatment variability was assessed using a multivariable logistic regression model that included treatment, patient, tumor, and census track variables. Overall survival was analyzed using the Kaplan-Meier approach and Cox proportional hazard models. RESULTS: The most common treatments for 2958 patients with stage IIIA (N2) NSCLC were radiation with chemotherapy (n = 1065, 36%), no treatment (n = 534, 18%), and radiation alone (n = 383, 13%). Surgery was performed in 709 patients (24%): 235 patients (8%) had surgery alone, 40 patients (1%) had surgery with radiation, 222 patients had surgery with chemotherapy (8%), and 212 patients (7%) had surgery, chemotherapy, and radiation. Younger age (p < 0.0001), lower T-status (p < 0.0001), female sex (p = 0.04), and living in a census track with a higher median income (p = 0.03) predicted surgery use. Older age (p < 0.0001) was the only factor that predicted that patients did not get any therapy. The 3-year overall survival was 21.8 ± 1.5% for all patients, 42.1 ± 3.8% for patients that had surgery, and 15.4 ± 1.5% for patients that did not have surgery. Increasing age, higher T-stage and Charlson Comorbidity Index, and not having surgery, radiation, or chemotherapy were all risk factors for worse survival (all p values < 0.001). CONCLUSIONS: Treatment of elderly patients with stage IIIA (N2) NSCLC is highly variable and varies not only with specific patient and tumor characteristics but also with regional income level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). METHODS A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. RESULTS Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. CONCLUSIONS The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Intensity-modulated radiotherapy (IMRT) credentialing for a EORTC study was performed using an anthropomorphic head phantom from the Radiological Physics Center (RPC; RPC(PH)). Institutions were retrospectively requested to irradiate their institutional phantom (INST(PH)) using the same treatment plan in the framework of a Virtual Phantom Project (VPP) for IMRT credentialing. MATERIALS AND METHODS CT data set of the institutional phantom and measured 2D dose matrices were requested from centers and sent to a dedicated secure EORTC uploader. Data from the RPC(PH) and INST(PH) were thereafter centrally analyzed and inter-compared by the QA team using commercially available software (RIT; ver.5.2; Colorado Springs, USA). RESULTS Eighteen institutions participated to the VPP. The measurements of 6 (33%) institutions could not be analyzed centrally. All other centers passed both the VPP and the RPC ±7%/4 mm credentialing criteria. At the 5%/5 mm gamma criteria (90% of pixels passing), 11(92%) as compared to 12 (100%) centers pass the credentialing process with RPC(PH) and INST(PH) (p = 0.29), respectively. The corresponding pass rate for the 3%/3 mm gamma criteria (90% of pixels passing) was 2 (17%) and 9 (75%; p = 0.01), respectively. CONCLUSIONS IMRT dosimetry gamma evaluations in a single plane for a H&N prospective trial using the INST(PH) measurements showed agreement at the gamma index criteria of ±5%/5 mm (90% of pixels passing) for a small number of VPP measurements. Using more stringent, criteria, the RPC(PH) and INST(PH) comparison showed disagreement. More data is warranted and urgently required within the framework of prospective studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND To evaluate toxicity and outcome of intensity modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) to the positive lymph nodes in patients with loco-regional advanced cervical cancer (LRACC). METHODS The study population comprised ten patients with 18FDG-PET\CT positive lymph nodes (LNs), who underwent chemoradiation with IMRT and SIB. A dose of 50.4 Gy, in daily fractions of 1.8 Gy, was delivered to primary tumor and draining LNs. Primary tumor received an additional external beam boost to a total dose of 55.8 Gy. A SIB of 62 Gy, in daily fractions of 2 Gy, was delivered to the 18FDG-PET\CT positive LNs. Finally, a high dose rate brachytherapy (HDRB) boost (15 - 18 Gy) was administered to the primary tumor. The primary goal of this study was to evaluate acute and early late toxicity and loco-regional control. RESULTS The median number of irradiated LNs per patient was 3 (range: 1-6) with a median middle nodal SIB-volume of 26.10 cm3 (range, 11.9-82.50 cm3). Median follow-up was 20 months (range, 12 to 30 months). Acute and late grade 3 toxicity was observed in 1 patient. Three of the patients developed a recurrence, one in the form of a local tumor relapse, one had a paraaortic LN metastasis outside the treated volume and the last one developed a distant metastasis. CONCLUSION IMRT with SIB in the region of 18FDG-PET positive lymph nodes appears to be an effective therapy with acceptable toxicity and might be useful in the treatment of patients with locally advanced cervical cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The aim of the paper is to identify, review, analyze, and summarize available evidence in three areas on the use of cross-sectional imaging, specifically maxillofacial cone beam computed tomography (CBCT) in pre- and postoperative dental implant therapy: (1) Available clinical use guidelines, (2) indications and contraindications for use, and (3) assessment of associated radiation dose risk. MATERIALS AND METHODS Three focused questions were developed to address the aims. A systematic literature review was performed using a PICO-based search strategy based on MeSH key words specific to each focused question of English-language publications indexed in the MEDLINE database retrospectively from October 31, 2012. These results were supplemented by a hand search and gray literature search. RESULTS Twelve publications were identified providing guidelines for the use of cross-sectional radiography, particularly CBCT imaging, for the pre- and/or postoperative assessment of potential dental implant sites. The publications discovered by the PICO strategy (43 articles), hand (12), and gray literature searches (1) for the second focus question regarding indications and contraindications for CBCT use in implant dentistry were either cohort or case-controlled studies. For the third question on the assessment of associated radiation dose risk, a total of 22 articles were included. Publication characteristics and themes were summarized in tabular format. CONCLUSIONS The reported indications for CBCT use in implant dentistry vary from preoperative analysis regarding specific anatomic considerations, site development using grafts, and computer-assisted treatment planning to postoperative evaluation focusing on complications due to damage of neurovascular structures. Effective doses for different CBCT devices exhibit a wide range with the lowest dose being almost 100 times less than the highest dose. Significant dose reduction can be achieved by adjusting operating parameters, including exposure factors and reducing the field of view (FOV) to the actual region of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PurposeTo assess clinical outcomes and patterns of loco-regional failure (LRF) in relation to clinical target volumes (CTV) in patients with locally advanced hypopharyngeal and laryngeal squamous cell carcinoma (HL-SCC) treated with definitive intensity modulated radiotherapy (IMRT) and concurrent systemic therapy.MethodsData from HL-SCC patients treated from 2007 to 2010 were retrospectively evaluated. Primary endpoint was loco-regional control (LRC). Secondary endpoints included local (LC) and regional (RC) controls, distant metastasis free survival (DMFS), laryngectomy free survival (LFS), overall survival (OS), and acute and late toxicities. Time-to-event endpoints were estimated using Kaplan-Meier method, and univariate and multivariate analyses were performed using Cox proportional hazards models. Recurrent gross tumor volume (RTV) on post-treatment diagnostic imaging was analyzed in relation to corresponding CTV (in-volume, > 95% of RTV inside CTV; marginal, 20¿95% inside CTV; out-volume, < 20% inside CTV).ResultsFifty patients (stage III: 14, IVa: 33, IVb: 3) completed treatment and were included in the analysis (median follow-up of 4.2 years). Three-year LRC, DMFS and overall survival (OS) were 77%, 96% and 63%, respectively. Grade 2 and 3 acute toxicity were 38% and 62%, respectively; grade 2 and 3 late toxicity were 23% and 15%, respectively. We identified 10 patients with LRF (8 local, 1 regional, 1 local¿+¿regional). Six out of 10 RTVs were fully included in both elective and high-dose CTVs, and 4 RTVs were marginal to the high-dose CTVs.ConclusionThe treatment of locally advanced HL-SCC with definitive IMRT and concurrent systemic therapy provides good LRC rates with acceptable toxicity profile. Nevertheless, the analysis of LRFs in relation to CTVs showed in-volume relapses to be the major mode of recurrence indicating that novel strategies to overcome radioresistance are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Standard dose of external beam radiotherapy seems to be insufficient for satisfactory control of loco-regionally advanced cervical cancer. Aim of our study is to evaluate the outcome as well as early and chronic toxicities in patients with loco-regionally advanced cervical cancer, treated with dose escalated intensity modulated radiotherapy (IMRT) combined with cisplatin chemotherapy. MATERIAL AND METHODS Thirty-nine patients with cervical carcinoma FIGO stage IB2 - IVA were treated with curative intent between 2006 and 2010. The dose of 50.4 Gy was prescribed to the elective pelvic nodal volume. Primary tumors < 4 cm in diameter (n = 6; 15.4 %) received an external beam radiotherapy (EBRT) boost of 5.4 Gy, primary tumors > 4 cm in diameter (n = 33; 84.6 %) received an EBRT boost of 9 Gy. Patients with positive lymph nodes detected with (18)FDG-PET/CT (n = 22; 56.4 %) received a boost to a total dose of 59.4 - 64.8 Gy. The para-aortic region was included in the radiation volume in 8 (20.5 %) patients and in 5 (12.8 %) patients the para-aortic macroscopic lymph nodes received an EBRT boost. IMRT was followed with a 3D planned high dose rate intrauterine brachytherapy given to 36 (92.3 %) patients with a total dose ranging between 15-18 Gy in three fractions (single fraction: 4-6.5 Gy). Patients without contraindications (n = 31/79.5 %) received concomitantly a cisplatin-based chemotherapy (40 mg/kg) weekly. Toxicities were graded according to the common terminology criteria for adverse events (CTCAE v 4.0). RESULTS Mean overall survival for the entire cohort was 61.1 months (±3.5 months). Mean disease free survival was 47.2 months (±4.9 months) and loco-regional disease free survival was 55.2 months (±4.4 months). 65 % of patients developed radiotherapy associated acute toxicities grade 1, ca. 30 % developed toxicities grade 2 and just two (5.2 %) patients developed grade 3 toxicities, one acute diarrhea and one acute cystitis. 16 % of patients had chronic toxicities grade 1, 9 % grade 2 and one patient (2.6 %) toxicities grade 3 in the form of vaginal dryness. CONCLUSION Dose escalated IMRT appears to have a satisfactory outcome with regards to mean overall survival, disease free and loco-regional disease free survival, whereas the treatment-related toxicities remain reasonably low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Magnetic resonance imaging (MRI) of the prostate is considered to be the most precise noninvasive staging modality for localized prostate cancer. Multiparametric MRI (mpMRI) dynamic sequences have recently been shown to further increase the accuracy of staging relative to morphological imaging alone. Correct radiological staging, particularly the detection of extraprostatic disease extension, is of paramount importance for target volume definition and dose prescription in highly-conformal curative radiotherapy (RT); in addition, it may affect the risk-adapted duration of additional antihormonal therapy. The purpose of our study was to analyze the impact of mpMRI-based tumor staging in patients undergoing primary RT for prostate cancer. METHODS A total of 122 patients admitted for primary RT for prostate cancer were retrospectively analyzed regarding initial clinical and computed tomography-based staging in comparison with mpMRI staging. Both tumor stage shifts and overall risk group shifts, including prostate-specific antigen (PSA) level and the Gleason score, were assessed. Potential risk factors for upstaging were tested in a multivariate analysis. Finally, the impact of mpMRI-based staging shift on prostate RT and antihormonal therapy was evaluated. RESULTS Overall, tumor stage shift occurred in 55.7% of patients after mpMRI. Upstaging was most prominent in patients showing high-risk serum PSA levels (73%), but was also substantial in patients presenting with low-risk PSA levels (50%) and low-risk Gleason scores (45.2%). Risk group changes occurred in 28.7% of the patients with consequent treatment adaptations regarding target volume delineation and duration of androgen deprivation therapy. High PSA levels were found to be a significant risk factor for tumor upstaging and newly diagnosed seminal vesicle infiltration assessed using mpMRI. CONCLUSIONS Our findings suggest that mpMRI of the prostate leads to substantial tumor upstaging, and can considerably affect treatment decisions in all patient groups undergoing risk-adapted curative RT for prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT.