965 resultados para quantum dots
Resumo:
InAs and In0.9Al0.1As self-assembled quantum dots have been grown by Stranski-Krastanow growth mode on In0.52Al0.48As lattice-matched on (0 0 1)InP substrates by MBE. The ternary In0.9Al0.1As dots on InP was demonstrated for the first time. The structural and optical properties were characterized using TEM and PL, respectively. Experimental results show that, a larger critical thickness is required for In0.9Al0.1As dots formation than for InAs dots, the In0.9Al0.1As dots show larger sizes and less homogeneity; some ordering in alignment can be observed in both InAs and In0.9Al0.1As dots, and In0.9Al0.1As dots give narrower luminescence than InAs dots. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Variable temperature photoluminescence (PL) measurements for In0.3Ga0.7As(6 nm)/GaAs(34 nm) quantum dot superlattices with a period of 20 and an In0.3Ga0.7As(6 nm)/GaAs(34 nm) reference single quantum well have been conducted. It is found that the temperature dependence is different between the quantum dots and the reference single quantum well. The PL peak energy of the single quantum well decreases faster than that of the quantum dots with increasing temperature. The PL peak energy for the InGaAs/GaAs quantum dots closely follows the InAs band gap in the temperature range from 11 to 170 K, while the PL peak energy for the InGaAs/GaAs quantum well closely follows the GaAs band gap. In comparison with InAs/GaAs quantum dots, the InGaAs/GaAs quantum dots are more typical as a zero-dimensional system since the unusual PL results, which appear in the former, are not obvious for the latter. (C) 1999 American Institute of Physics. [S0021-8979(99)08615-6].
Resumo:
Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.
Resumo:
The mechanism of self-organization of quantum dots (QDs) during the growth of InGaAs/GaAs multilayers on GaAs (1 0 0) was investigated with cross-sectional transmission electron microscopy (XTEM), and double-crystal X-ray diffraction (DCXD). We found that the QDs spacing in the first layer can affect the vertical alignment of QDs. There seems to exist one critical lateral QD spacing, below which merging of QDs with different initial size is found to be the dominant mechanism leading to perfect vertical alignment. Once the critical value of QDs spacing is reached, the InGaAs QDs of the first layer are simply reproduced in the upper layers. The X-ray rocking curve clearly shows two sets of satellite peaks, which correspond to the QDs superlattice, and multi-quantum wells (QW) formed by the wetting layers around QDs. (C) 1999 Elsevier Science B.V. All rights reserved.
Structural and infrared absorption properties of self-organized InGaAs GaAs quantum dots multilayers
Resumo:
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In situ ultra high vacuum scanning probe microscopy (SPM) and low-temperature :photoluminescence (PL) studies have been performed on Si-doped self-organized InAs/GaAs quantum dots samples to investigate the Si doping effects. Remarkably, when Si is doped in the sample, according to the SPM images, more small dots are formed when compared with images from undoped samples. On the PL spectra, high-energy band tail which correspond to the small dots appear, with increasing doping concentration, the integral intensity of the high-energy band tail account for the whole peak increase too. We relate this phenomenon to a model that takes the Si atom as the nucleation center for QDs formation. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have examined the influence of substrate surface orientation on self-assembled InAlAs/AlGaAs quantum dots grown on (0 0 1) and (n 1 1) A/B (n = 3, 5) GaAs substrates by molecular beam epitaxy (MBE). Preliminary characterizations have been performed using photoluminescence (PL) and transmission electron microscopy (TEM). The PL emission energies of quantum dots on high Miller index surface are found to be strongly dependent on the atomic-terminated surface (A or B surface) of the substrate. We observed that there were planar ordering larger islands on (3 1 1)B surface compared to (0 0 1) surface, in contrast, a rough interface and smaller "grains" on (3 1 1)A surface, this result is identical with PL emission energy from these islands. We propose that the rapid strain-induced surface "roughening" impedes the formation of 3D islands on A surface, and indicating that this is a promising approach of the realization of ordering distribution on (3 1 1)B plane for devices such as red-emitting semiconductor quantum dots lasers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Self-assembled InxGa1-xAs quantum dots (QDs) on (311) and (100) GaAs surfaces have been grown by conventional solid source molecular beam epitaxy. Spontaneously ordering alignment of InxGa1-xAs QDs with lower In content around 0.3 has been observed on As-terminated (B type) surfaces. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311) B surface, and is strongly dependent upon the In content x. The ordering alignment becomes significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) and (311) Ga-terminated (A type) substrates.
In composition dependence of lateral ordering in InGaAs quantum dots grown on (311)B GaAs substrates
Resumo:
Self-assembled InxGa1-xAs quantum dots (QDs) on (311)A/B GaAs surfaces have been grown by molecular beam epitaxy (MBE). Spontaneously ordering alignment of InxGa1-xAs with lower In content around 0.3 have been observed. The direction of alignment orientation of the QDs formation differs from the direction of misorientation of the (311)B surface, and is strongly dependent upon the In content x. The ordering alignment become significantly deteriorated as the In content is increased to above 0.5 or as the QDs are formed on (100) or (311)A substrates. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the height of quantum dots. Uniformity of quantum dots has been enhanced because the full-width of half-maximum of photoluminescence decrease from 80 to 27 meV in these samples as the interruption time is increased. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time, which can be used to modulate energy level of quantum dots. All of the phenomenon mentioned above can be attributed to the diffusion of In atoms from the tops of InAs islands to the top of GaAs cap layer caused by the difference between the surface energies of InAs and GaAs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Spontaneous formation of InAs quantum wires in InAlAs on InP(001) via sequential chain-like coalescence of quantum dots along [1 (1) over bar 0] is realized. Theoretical calculations based on the energetics of interacting steps provide a qualitative explanation for the experimental results. Sequential coalescence of initially isolated dots reduces the total free energy strikingly. Thus the wire-like structure is energetically favorable. (C) 1998 Elsevier Science B.V.