959 resultados para powder diffraction
Resumo:
This study describes the synthesis, IR, (1)H, and (13)C{(1)H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl(2)(HmPz)(2)] 1, [PdBr(2)(HmPz)(2)] 2, [PdI(2)(HmPz)(2)] 3, [Pd(SCN)(2)(HmPz)(2)] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd(0) by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 a parts per thousand 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.
Resumo:
Synthesis, spectroscopic characterization and thermal analysis of the compounds [Pd-2(dmba)(2)(mu-NCO)(mu-2-qnS)] (1), [Pd-2(dmba)(2)(mu-NCO)(mu-8-qnS)] (2), [Pd(2-qnS)(2)] (3) and [Pd(8-qn(S))2] (4) (dmba=N,N-dimethylbenzylamine; 2-qnS=2-quinolinethiolate; 8-qnS=8-quinolinethiolate) are described. The thermal decomposition of these compounds occurs in four consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3 > 1 > 2.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The discovery of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary (MPB), previously considered as a region where the rhombohedral and tetragonal phases of PZT coexist, was recently reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. The main objective has been to define a new phase diagram of PZT. In this context, infrared spectroscopic studies were performed in the vicinity of the MPB and studies were initially centred on a PZT sample with x = 0.49 mol% Ti content. Results suggested that the monoclinic --> tetragonal phase transition occurs at 237 K, confirming the use of IR as a useful technique to investigate this phase transition.
Resumo:
Recently, the observation of a new monoclinic phase in the PbZr1-xTixO3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm(-1). The four possible nu(1)-stretching modes (Ti-O and Zr-O stretch) in the BO6 octahedron in the ABO(3) structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode nu(1)-(Zr-O) remains practically unaltered, while both intermediate nu(1)-(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency nu(1)-(Ti-O) and nu(1)-(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic --> tetragonal phase transition in PbZr0.50Ti0.50O3 ceramics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Helicobacter pylori is the main cause of gastritis, gastroduodenal ulcer disease and gastric cancer. The most recommended treatment for eradication of this bacteria often leads to side effects and patient poor compliance, which induce treatment failure. Magnetic drug targeting is a very efficient method that overcomes these drawbacks through association of the drug with a magnetic compound. Such approach may allow such systems to be placed slowed down to a specific target area by an external magnetic field. This work reports a study of the synthesis and characterization of polymeric magnetic particles loaded with the currently used antimicrobial agents for the treatment of Helicobacter pylori infections, aiming the production of magnetic drug delivery system by oral route. Optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray powder diffraction, nitrogen adsorption/desorption isotherms and vibrating sample magnetometry revealed that the magnetite particles, produced by the co-precipitation method, consisted of a large number of aggregated nanometer-size crystallites (about 6 nm), creating superparamagnetic micrometer with high magnetic susceptibility particles with an average diameter of 6.8 ± 0.2 μm. Also, the polymeric magnetic particles produced by spray drying had a core-shell structure based on magnetite microparticles, amoxicillin and clarithromycin and coated with Eudragit® S100. The system presented an average diameter of 14.2 ± 0.2 μm. The amount of magnetite present in the system may be tailored by suitably controlling the suspension used to feed the spray dryer. In the present work it was 2.9% (w/w). The magnetic system produced may prove to be very promising for eradication of Helicobacter pylori infections
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of calcination temperature during the formation of the solid solution Sn(0.9)Ti(0.1)O(2) doped with 1.00 mol % CoO and 0.05 mol % Nb(2)O(5) is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O(2) phase and near 1000 degrees C, and the remaining TiO(2) (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 degrees C associated with the presence of TiO(2) (anatase) and the second mechanism, occurring between 1200 and 1300 degrees C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies. (C) 2008 International Centre for Diffraction Data.
Resumo:
BaTiO(3) powders were prepared through mechanical activation chemistry and analyzed by Rietveld refinement with X-ray diffraction data. Raw BaCO(3) and TiO(2) powders were dry milled for 5 and 20 h and then calcinated for 2 and 4 h at 800 degrees C. The milling process was found to have broken up the BaCO(3) and TiO(2) crystals into smaller crystals and formed only small amounts ( 1.5 wt%) of BaTiO(3). Subsequence calcinations for 2 and 4 h at 800 degrees C successfully produced large amounts (>97.7 wt%) of BaTiO(3) crystals. The calcination process also generated microstrains and crystallite-size anisotropy in BaTiO(3). An increase in the calcination time from 2 to 4 h increased the BaTiO(3) weight percentage and the crystal lite-shape anisotropy, but decreased the tetragonal distortion anisotropic microstrains in BaTiO(3) crystals. (C) 2008 International Centre for Diffraction Data.
Resumo:
The pearlitic reaction in Cu-10wt%Al alloy with additions of 4, 6, 8, and 10wt%Ag was studied using scanning electron microscopy, energy dispersive X-ray microanalysis, in situ X-ray diffractometry, and microhardness measurements. The results indicated that the presence of Ag changes the pearlitic phase microstructure and its mechanical properties, because of the influence of Ag in the pearlitic phase growth mechanism. (C) 2008 International Centre for Diffraction Data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)