939 resultados para physiology of production
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article aims to analyse the introduction of environmental issues in the context of the production function, which has been referred to as the organisational area to lead corporate environmental management. With that purpose, the theoretical references for corporate environmental management and the necessary alterations in production function have been organised to include environmental aspects, especially in terms of product and process development, quality management, and logistics. Considering that this research field still lacks empirical evidence for Brazilian companies, four case studies were conducted using companies located in the country. The environmental management maturity level of those companies tends to follow the rate with which the environmental issue is introduced in production sub-areas, especially in the product development process. However, in most cases we found that the companies had difficulties in structuring the insertion of the environmental dimension in logistics. The final notes point out the distance observed between what is recommended by international literature and the reality of Brazilian companies in the challenge of making the production function environmentally friendly.
Resumo:
Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.
Resumo:
Various reports concerning catalytic reaction of glycerol for hydrogen production is available. However, economic analyses of this activity are not found yet. The objective of this work is to evaluate the process of hydrogen production via steam reforming of glycerol obtained through transesterification process of bio-oils. The thermochemical process of steam reforming process was determined due to high efficiency, feasibility and lower cost of design, development, operation and maintenance. These bio-oils come from feedstocks largely encountered in Brazil such as soybean, palm, castor bean, peanut and cotton seed as also come from residues such as defective coffee, tallow beef, wastewater (scum) and others. Various findings were obtained such as potential of production of glycerol utilizing residues (considering available amounts in the Brazilian states) and some vegetable feedstocks (considering production of harvested feedstock per hectare). Subsequently, production of hydrogen via steam reforming of generated glycerol, and foreseen electricity production via fuel cells were also determined. An additional estimation was paid for production of H-BIO, an innovative fuel developed by PETROBRAS (Petroleo Brasileiro S.A.), where hydrogen and bio-fuel are utilized and generates propane as co-product. About this work, it was concluded that high amounts of hydrogen and electricity could be produced considering an enormous potential from each cited feedstock being an attractive alternative as distributed electricity source and as an additional source for some activities, inclusively those that produce their own feedstocks such as abattoirs (beef tallow), and wastewater treatment plants. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this paper is to describe the benefits of sugar cane ethanol in Brazil, appointing the productivity of this type of fuel based on hectares of plantation, its carbon dioxide cycle and the contribution to reduce the greenhouse effect. In the following step the uses of ethanol for hydrogen production by steam reforming is analyzed and some comparison with natural gas steam reforming is performed. The sugar cane industry in Brazil, in a near future, in the hydrogen era, could be modified according to our purpose, since besides the production of sugar, and ethylic and anhydric alcohol, Brazilian sugar cane industry will also be able to produce biohydrogen.Fuel cells appear like a promising technology for energy generation. Among several technologies in the present, the PEMFC (proton exchange membrane fuel cell) is the most appropriate for vehicles application, because it combines durability, high power density, high efficiency, good response and it works at relatively low temperatures. Besides that it is easy to turn it on and off and it is able to support present vibration in vehicles. A PEMFC's problem is the need of noble catalysts like platinum. Another problem is that CO needs to be in low concentration, requiring a more clean hydrogen to avoid fuel cell deterioration.One part of this paper was developed in Stockholm, where there are some buses within the CUTE (clean urban transport for Europe) project that has been in operation with FC since January 2004. Another part was developed in Guaratingueta, Brazil. Brazil intends to start up a program of FC buses. As conclusion, this paper shows the economical analysis comparing buses moved by fuel cells using hydrogen by different kinds of production. Electrolyze with wind turbine, natural gas steam reforming and ethanol steam reforming. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Growth hormone (GH), insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their associated binding proteins and transmembrane receptors (GHR, IGF1R and IGF2R) play an important role in the physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of microsatellite markers located in the 5'-regulatory region of the IGF1 and GHR genes in beef cattle belonging to different genetic groups and to determine effects of these markers on growth and carcass traits in these animals under an intensive production system. For this purpose, genotyping was performed on 384 bulls including 79 Nellore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred animals originating from crosses of Simmental (1/2 Simmental, n = 30) and Angus (1/2 Angus, n = 245) sires with Nellore females. The effects of substituting L allele for S allele of GHR microsatellite across Nellore, Canchim and 1/2 Angus were significant for weight gain and body weight (P < 0.05). The IGF1 microsatellite allele substitutions of 229 for 225 within Nellore group and of 225 for 229 within 1/2 Angus were not significant for any of the traits.
Resumo:
The present study was performed to evaluate the microbiological characteristics of clinically health quarters submitted to milking and also to observe the distribution of contagious and environmental agents between brazilian dry and rainy seasons of the year. During nine months 734 quarters from 37 buffalo cows were submitted monthly to udder inspection, palpation and strip cup test before milking. 734 asseptic milk samples were inoculated in 10% ovine blood agar and in MacConkey agar media, then incubated for 72 hours at 37 C. Among the 580 isolated microrganisms, 182 (31,38%) were recovered from samples collected during the rainy season and 398 (68,62%) from the dry season. In the rainy period the most prevalent agents were: bacteria from the genus Corynebacterium sp (53,30%), Staphylococcus sp (19,78%) and Rhodococcus equi (13,74%). In the dry period, the commonest ones were: Corynebacterium sp (44,97%), Staphylococcus sp (18,84%) and Micrococcus sp (9,55%). The results demonstrated that the methods used to select health quarters in brazilian dairy buffalo farms allow the transmission of contagious bacteria during both seasons of the year, maintaining agents known to cause mainly subclinical inflammatory reactions that compromise cronically the physiology and production of the mammary gland.
Resumo:
Within about 30 years the Brazilian buffalo (Bubalus bubalis) herd will reach approximately 50 million head as a result of the great adaptive capacity of these animals to tropical climates, together with the good productive and reproductive potential which make these animals an important animal protein source for poor and developing countries. The myostatin gene (GDF8) is important in the physiology of stock animals because its product produces a direct effect on muscle development and consequently also on meat production. The myostatin sequence is known in several mammalian species and shows a high degree of amino acid sequence conservation, although the presence of non-silent and silent changes in the coding sequences and several alterations in the introns and untranslated regions have been identified. The objective of our work was to characterize the myostatin coding regions of B. bubalis (Murrah breed) and to compare them with the Bos taurus regions looking for variations in nucleotide and protein sequences. In this way, we were able to identify 12 variations at DNA level and five alterations on the presumed myostatin protein sequence as compared to non double-muscled bovine sequences.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)