954 resultados para pesticide applicator
Resumo:
Purpose: To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device.
Methods: A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers applied 11 × 11 arrays of 400 μm hydrogel-forming microneedle arrays to their own skin following the instructions provided. Skin barrier function disruption was assessed using transepidermal water loss measurements and optical coherence tomography and results compared to those obtained when more experienced researchers applied the microneedles to the volunteers or themselves.
Results: Volunteer self-application of the 400 μm microneedle design resulted in an approximately 30% increase in skin transepidermal water loss, which was not significantly different from that seen with self-application by the more experienced researchers or application to the volunteers. Use of optical coherence tomography showed that self-application of microneedles of the same density (400 μm, 600 μm and 900 μm) led to percentage penetration depths of approximately 75%, 70% and 60%, respectively, though the diameter of the micropores created remained quite constant at approximately 200 μm. Transepidermal water loss progressively increased with increasing height of the applied microneedles and this data, like that for penetration depth, was consistent, regardless of applicant.
Conclusion: We have shown that hydrogel-forming microneedle arrays can be successfully and reproducibly applied by human volunteers given appropriate instruction. If these outcomes were able to be extrapolated to the general patient population, then use of bespoke MN applicator devices may not be necessary, thus possibly enhancing patient compliance.
Resumo:
There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology.
Resumo:
Using a laboratory experiment, we investigate whether incentive compatibility affects subjective probabilities elicited via the exchangeability method (EM), an elicitation technique consisting of several chained questions. We hypothesize that subjects who are aware of the chaining strategically behave and provide invalid subjective probabilities, while subjects who are not aware of the chaining state their real beliefs and provide valid subjective probabilities. The validity of subjective probabilities is investigated using de Finetti's notion of coherence, under which probability estimates are valid if and only if they obey all axioms of probability theory.
Four experimental treatments are designed and implemented. Subjects are divided into two initial treatment groups: in the first, they are provided with real monetary incentives, and in the second, they are not. Each group is further sub-divided into two treatment groups, in the first, the chained structure of the experimental design is made clear to the subjects, while, in the second, the chained structure is hidden by randomizing the elicitation questions.
Our results suggest that subjects provided with monetary incentives and randomized questions provide valid subjective probabilities because they are not aware of the chaining which undermines the incentive compatibility of the exchangeability method.
Resumo:
Purpose: To assess the bacterial contamination risk in cataract surgery associated with mechanical compression of the lid margin immediately after sterilization of the ocular surface.
Setting: Department of Cataract, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Design: Prospective randomized controlled double-masked trial.
Methods: Patients with age-related cataract were randomly assigned to 1 of 2 groups. In Group A (153 eyes), the lid margin was compressed and scrubbed for 360 degrees 5 times with a dry sterile cotton-tipped applicator immediately after ocular sterilization and before povidone-iodine irrigation of the conjunctival sac. Group B (153 eyes) had identical sterilization but no lid scrubbing. Samples from the lid margin, liquid in the collecting bag, and aqueous humor were collected for bacterial culture. Primary outcome measures included the rate of positive bacterial culture for the above samples. The species of bacteria isolated were recorded.
Results: Group A and Group B each comprised 153 eyes. The positive rate of lid margin cultures was 54.24%. The positive rate of cultures for liquid in the collecting bag was significantly higher in Group A (23.53%) than in Group B (9.80%) (P=.001).The bacterial species cultured from the collecting bag in Group B were the same as those from the lid margin in Group A. The positive culture rate of aqueous humor in both groups was 0%.
Conclusion: Mechanical compression of the lid margin immediately before and during cataract surgery increased the risk for bacterial contamination of the surgical field, perhaps due to secretions from the lid margin glands.
Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned.
Resumo:
Um assunto que requer atenção é a avaliação ecológica da qualidade da água de ecossistemas de água doce. Uma abordagem que surge como promissora é a biomonitorização baseada em biomarcadores, porque pode avaliar a saúde dos organismos e obter sinais de alerta precoce acerca dos riscos ambientais. Até agora, porém, o uso de biomarcadores em espécies de invertebrados, para diagnosticar danos ecológicos nos rios, é escasso. Por essa razão, existe uma necessidade urgente de desenvolver biomarcadores nas principais espécies de macroinvertebrados dos ecossistemas fluviais que são alvo de estudo. Esta tese tem como objectivo averiguar se as respostas in situ, aliadas aos biomarcadores, podem ser um método viável para avaliar os danos ecológicos de contaminantes em ecossistemas de água doce. Numa primeira fase, os biomarcadores foram usados para averiguar os mecanismos fisiológicos de adaptação genética de clones de Daphnia magna ao pesticida organofosforado fenitrothion. Numa segunda fase, os biomarcadores foram usados como ferramentas de diagnóstico de poluição em zonas ribeirinhas. Estes estudos foram realizados com três espécies-chave de macroinvertebrados: Daphnia magna, Corbicula fluminea e Hydropsyche exocellata, nos rios Besós e Llobregat e no Delta do rio Ebro (NE Espanha). Além disso, foram realizados com animais capturados nos rios, ou com ensaios de transplantes, e foram complementados com índices biológicos de macroinvertebrados e análises químicas da água e dos animais. Como os contaminantes químicos têm vários modos toxicológicos de acção e, portanto, afectam várias respostas bioquímicas dos organismos, foram analisados nas três espécies um conjunto de biomarcadores pertencentes a diferentes vias metabólicas. A abordagem experimental indica que o uso combinado de biomarcadores e outras medidas, tais como índices biológicos e testes in situ, contribui para diagnosticar os efeitos prejudiciais de contaminantes nas comunidades ribeirinhas.
Resumo:
Nowadays, a systems biology approach is both a challenge as well as believed to be the ideal form of understanding the organisms’ mechanisms of response. Responses at different levels of biological organization should be integrated to better understand the mechanisms, and hence predict the effects of stress agents, usable in broader contexts. The main aim of this thesis was to evaluate the underlying mechanisms of Enchytraeus albidus responses to chemical stressors. Therefore, there was a large investment on the gene library enrichment for this species, as explained ahead. Overall, effects of chemicals from two different groups (metals and pesticides) were assessed at different levels of biological organization: from genes and biochemical biomarkers to population endpoints. Selected chemicals were: 1) the metals cadmium and zinc; 2) the insecticide dimethoate, the herbicide atrazine and the fungicide carbendazim. At the gene and sub-cellular level, the effects of time and dosage were also adressed. Traditional ecotoxicological tests - survival, reproduction and avoidance behavior - indicated that pesticides were more toxic than metals. Avoidance behaviour is extremely important from an ecological point of view, but not recommended to use for risk assessment purposes. The oxidative stress related experiment showed that metals induced significant effects on several antioxidant enzyme activities and substrate levels, as well as oxidative damage on the membrane cells. To increase the potential of our molecular tool to assess transcriptional responses, the existing cDNA library was enriched with metal and pesticide responding genes, using Suppression Subtractive Hybridization (SSH). With the sequencing information obtained, an improved Agilent custom oligonucleotide microarray was developed and an EST database, including all existing molecular data on E. albidus, was made publicly available as an interactive tool to access information. With this microarray tool, most interesting and novel information on the mechanisms of chemical toxicity was obtained, with the identification of common and specific key pathways affected by each compound. The obtained results allowed the identification of mechanisms of action for the tested compounds in E. albidus, some of which are in line with the ones known for mammals, suggesting across species conserved modes of action and underlining the usefulness of this soil invertebrate as a model species. In general, biochemical and molecular responses were influenced by time of exposure and chemical dosage and these allowed to see the evolution of events. Cellular energy allocation results confirmed the gene expression evidences of an increased energetic expenditure, which can partially explain the decrease on the reproductive output, verified at a later stage. Correlations found throughout this thesis between effects at the different levels of biological organization have further improved our knowledge on the toxicity of metals and pesticides in this species.
Resumo:
Apesar do recente aumento no número de estudos, os lagartos persistem como um dos grupos menos estudados em ecotoxicologia e o desconhecimento em relação à sua resposta à contaminação ambiental é enorme. A nível europeu, os lacertídeos têm sido identificados como potenciais espécies modelo para a ecotoxicologia com répteis. O principal objectivo deste projecto era determinar se um lacertídeo abundante pertencente ao género Podarcis, podia ser utilizado como bioindicador de exposição e toxicidade em zonas agrícolas. Para atingir este objectivo, utilizámos uma estratégia integrada com três fases. Numa primeira fase realizou-se um estudo de campo para documentar o tipo de exposição e parâmetros populacionais de populações de lacertídeos que ocorrem em zonas de uso intenso de pesticidas e zonas de agricultura orgânica. A segunda fase consistiu num estudo de mesocosmo em que se expuseram juvenis a um conjunto de pesticidas em condições controladas durante um período de um ano. Finalmente, a terceira fase incluiu um estudo laboratorial sobre os efeitos do clorpirifos, um dos insecticidas mais utilizado a nível global, em lagartixas. No término de cada um dos estudos, analisaram-se diversos biomarcadores e parâmetros de exposição e toxicidade a pesticidas nos diferentes indivíduos. Este conjunto abrangente de parâmetros foi analisado em diferentes níveis de organização biológica, incluindo parâmetros populacionais, bem como comportamentais, fisiológicos, bioquímicos e histológicos. Em geral, detectaram-se poucas diferenças estatísticas significativas entre as populações dos campos expostos a pesticidas e populações referência. Confirmando a dificuldade que existe em isolar os efeitos de diferentes contaminantes sobre as populações de outros factores locais, ciclos sazonais ou eventos estocásticos. As populações de P. bocagei parecem ser capazes de lidar com o nível observado de exposição a pesticidas. No entanto, indivíduos que vivem em locais expostos a pesticidas parecem estar menos adaptados ecologicamente do que aqueles que vivem em locais referência, apresentando um estado de depleção nutricional e sinais de stress metabólico. Os resultados obtidos com os animais da experiência de mesocosmo parecem reforçar estes resultados. Os animais prosperaram relativamente bem em todos os mesocosmos, independentemente do tratamento ou não com pesticidas, apresentando uma ampla gama de comportamentos naturais. A abordagem laboratorial confirmou P. bocagei como um valioso indicador de exposição sub-letal a doses ambientalmente realistas de clorpirifos. De acordo, com o conjunto d resultados obtidos, P. bocagei parece ser um bioindicador adequado de exposição a pesticidas.
Resumo:
In the environment humans and biota are generally exposed to chemical mixtures rather than individual chemicals. Therefore, when assessing the environmental risk of chemicals, it is important to consider chemical mixtures and their possible interactions. The main objective of this work focused on the environmental risk assessment of pesticides found in the water of the Alqueva reservoir and their binary combinations. In this aquatic ecosystem several pesticides were above of the environmental quality standards. But in addition, there were several sampling points of the reservoir where ecotoxicity was observed despite the presence of these contaminants at low concentrations. Here, a component-based approach was used to assess the effects of the pesticide mixtures. The effects of the binary combinations of four herbicides, atrazine (ATR), terbuthylazine (TER), simazine (SIM) and metolachlor (MET), on the growth rate of the microalgae Pseudokirchneriella subcapitata and the effects of the binary combinations of the s-triazine herbicides ATR and TER and the insecticide chlorpyrifos (CPF) on the swimming behaviour and acetylcholinesterase (AChE) activity of the zebrafish Danio rerio were assessed using the two reference models of concentration addition (CA) and independent action (IA). Moreover, the combined effects of the herbicides (ATR, TER and MET) and the insecticide CPF were also tested on the swimming behaviour and AChE activity of the aquatic midge Chironomus riparius after the cholinesterases characterization. In this risk characterization, the calculated risk quotients for the herbicides ATR, TER, SIM and MET were higher than 1, meaning that these herbicides present a high risk for the Alqueva ecosystem. As expected, the microalgae P. subcapitata was the most sensitive species to the herbicides. However, despite these herbicides pose no or low risk to other aquatic organisms tested in this study, with EC50 values much higher than the concentrations found in this aquatic ecosystem, they are able to increase the toxic effects of CPF when they are tested in binary mixtures. Moreover, the risk quotients of mixtures of these herbicides present simultaneously in three different locations of the reservoir were also higher than 1, so this confirms the fact that these herbicides when present in mixtures, present a greater risk for this ecosystem than the expected considering each single chemical by its own.
Resumo:
The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20ºC and 25ºC) showed different response patterns. It was also observed that dimethoate’s degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.
Resumo:
Environmental contamination and climate changes constitute two of the most serious problems affecting soil ecosystems in agricultural fields. Agriculture is nowadays a highly optimized process that strongly relies on the application of multiple pesticides to reduce losses and increase yield production. Although constituting, per se, a serious problem to soil biota, pesticide mixtures can assume an even higher relevance in a context of unfavourable environmental conditions. Surprisingly, frameworks currently established for environmental risk assessments keep not considering environmental stressors, such as temperature, soil moisture or UV radiation, as factors liable to influence the susceptibility of organisms to pesticides, or pesticide mixtures, which is raising increasing apprehension regarding their adequacy to actually estimate the risks posed by these compounds to the environment. Albeit the higher attention received on the last few years, the influence of environmental stressors on the behaviour and toxicity of chemical mixtures remains still poorly understood. Aiming to contribute for this discussion, the main goal of the present thesis was to evaluate the single and joint effects of natural stressors and pesticides to the terrestrial isopod Porcellionides pruinosus. The first approach consisted on evaluating the effects of several abiotic factors (temperature, soil moisture and UV radiation) on the performance of P. pruinosus using several endpoints: survival, feeding parameters, locomotor activity and avoidance behaviour. Results showed that these stressors might indeed affect P. pruinosus at relevant environmental conditions, thus suggesting the relevance of their consideration in ecotoxicological assays. At next, a multiple biomarker approach was used to have a closer insight into the pathways of damage of UV radiation and a broad spectrum of processes showed to be involved (i.e. oxidative stress, neurotoxicity, energy). Furthermore, UV effects showed to vary with the environment medium and growth-stage. A similar biomarker approach was employed to assess the single and joint effects of the pesticides chlorpyrifos and mancozeb to P. pruinosus. Energy-related biomarkers showed to be the most differentiating parameters since age-classes seemed to respond differently to contamination stress and to have different metabolic costs associated. Finally, the influence of temperature and soil moisture on the toxicity of pesticide mixtures was evaluated using survival and feeding parameters as endpoints. Pesticide-induced mortality was found to be oppositely affected by temperature, either in single or mixture treatments. Whereas chlorpyrifos acute toxicity was raised under higher temperatures the toxicity of mancozeb was more prominent at lower temperatures. By the opposite, soil moisture showed no effects on the pesticide-induced mortality of isopods. Contrary to survival, both temperature and soil moisture showed to interact with pesticides to influence isopods’ feeding parameters. Nonetheless, was however the most common pattern. In brief, findings reported on this thesis demonstrated why the negligence of natural stressors, or multiple stressors in general, is not a good solution for risk assessment frameworks.
Resumo:
During the last century mean global temperatures have been increasing. According to the predictions, the temperature change is expected to exceed 1.5ºC in this century and the warming is likely to continue. Freshwater ecosystems are among the most sensitive mainly due to changes in the hydrologic cycle and consequently changes in several physico-chemical parameters (e.g. pH, dissolved oxygen). Alterations in environmental parameters of freshwater systems are likely to affect distribution, morphology, physiology and richness of a wide range of species leading to important changes in ecosystem biodiversity and function. Moreover, they can also work as co-stressors in environments where organisms have already to cope with chemical contamination (such as pesticides), increasing the environmental risk due to potential interactions. Therefore, the objective of this work was to evaluate the effects of climate change related environmental parameters on the toxicity of pesticides to zebrafish embryos. The following environmental factors were studied: pH (3.0-12.0), dissolved oxygen level (0-8 mg/L) and UV radiation (0-500 mW/m2). The pesticides studied were the carbamate insecticide carbaryl and the benzimidazole fungicide carbendazim. Stressors were firstly tested separately in order to derive concentration- or intensity-response curves to further study the effects of binary combinations (environmental factors x pesticides) by applying mixture models. Characterization of zebrafish embryos response to environmental stress revealed that pH effects were fully established after 24 h of exposure and survival was only affected at pH values below 5 and above 10. Low oxygen levels also affected embryos development at concentrations below 4 mg/L (delay, heart rate decrease and edema), and at concentrations below 0.5 mg/L the survival was drastically reduced. Continuous exposure to UV radiation showed a strong time-dependent impact on embryos survival leading to 100% of mortality after 72 hours of exposure. The toxicity of pesticides carbaryl and carbendazim was characterized at several levels of biological organization including developmental, biochemical and behavioural allowing a mechanistic understanding of the effects and highlighting the usefulness of behavioural responses (locomotion) as a sensitive endpoint in ecotoxicology. Once the individual concentration response relationship of each stressor was established, a combined toxicity study was conducted to evaluate the effects of pH on the toxicity of carbaryl. We have shown that pH can modify the toxicity of the pesticide carbaryl. The conceptual model concentration addition allowed a precise prediction of the toxicity of the jointeffects of acid pH and carbaryl. Nevertheless, for alkaline condition both concepts failed in predicting the effects. Deviations to the model were however easy to explain as high pH values favour the hydrolysis of carbaryl with the consequent formation of the more toxic degradation product 1- naphtol. Although in the present study such explanatory process was easy to establish, for many other combinations the “interactive” nature is not so evident. In the context of the climate change few scenarios predict such increase in the pH of aquatic systems, however this was a first approach focused in the lethal effects only. In a second tier assessment effects at sublethal level would be sought and it is expectable that more subtle pH changes (more realistic in terms of climate changes scenarios) may have an effect at physiological and biochemical levels with possible long term consequences for the population fitness.
Resumo:
Tese de doutoramento, Direito (Ciências Jurídico-Civis), Universidade de Lisboa, Faculdade de Direito, 2014
Resumo:
This paper describes a comparison of adaptations of the QuEChERS (quick, easy, cheap, effective, rugged and safe) approach for the determination of 14 organochlorine pesticide (OCP) residues in strawberry jam by concurrent use of gas chromatography (GC) coupled to electron capture detector (ECD) and GC tandem mass spectrometry (GC-MS/MS). Three versions were tested based on the original QuEChERS method. The results were good (overall average of 89% recoveries with 15% RSD) using the ultrasonic bath at five spiked levels. Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), were determined for each pesticide. LOD ranged from 0.8 to 8.9 microg kg-1 ; LOQ was in the range of 2.5–29.8 microg kg- 1; and calibration curves were linear (r2>0.9970) in the whole range of the explored concentrations (5–100 microg kg- 1). The LODs of these pesticides were much lower than the maximum residue levels (MRLs) allowed in Europe for strawberries. The method was successfully applied to the quantification of OCP in commercially available jams. The OCPs were detected lower than the LOD.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
A methodology for the determination of the pesticide chlorfenvinphos by microwave-assisted solvent extraction and square-wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane-acetone (1:1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of -0.60 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0 x 10-8 mol l-1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g-1 level. The average recoveries and standard deviations for the global procedure reached byMASE-square-wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.