952 resultados para peixe nativo
Resumo:
Tese de dout., Bioquímica (Biologia Celular e Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Dissertação de mest., Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011
Resumo:
Dissertação de mest., Aquacultura e Pescas, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2010
Resumo:
As preocupações médicas com o equilíbrio alimentar remontam à Antiguidade, mas apenas a partir do século XVII o assunto começou a ser questionado de modo mais científico e preciso. Dois médicos holandeses de renome, Luís Nunes (1553-1645) e Willem Piso (1611-1678), estudaram esta questão e legaram-nos tratados de inquestionável relevância historiográfica. Destacamos, em particular, Ichtyophagia sive de piscium esu commentarius (“Ictiofagia ou comentário sobre uma alimentação piscívora”, Antuérpia, 1616) e De Indiae utriusque re naturali et medica. Libri quatuordecim (“Sobre a Índia e sua história natural e médica”, Amesterdão, 1658). A defesa de uma dieta que inclua o consumo de peixe é transversal aos dois textos, pois ambos fundam um discurso inaugural em defesa de hábitos alimentares equilibrados numa época de profundas mudanças históricas e culturais impostas pelo contacto com as realidades do exótico Novo Mundo. Esta influência é sobretudo evidente na obra de Piso, especialmente nas suas descrições de espécies de peixes endémicas do Brasil.
Resumo:
Tese mest., Biologia Marinha, Universidade do Algarve, Faculdade de Ciências do Mar e do Ambiente, 2008
Resumo:
Dissertação de mest., Arqueologia (Teoria e Métodos), Faculdade de Ciências Humanas e Sociais, Univ. do Algarve, 2012
Resumo:
Diapositivos de apoio às aulas teóricas de Tecnologia Alimentar - ESSUAlg: Dietética e Nutrição
Resumo:
Relatório de Estágio de Licenciatura em Bioquímica, Universidade do Algarve, Faculdade de Ciências e Tecnologia, 2001
Resumo:
A aquacultura é uma área em expansão devido ao aumento do consumo de peixe nos últimos anos sendo que para os estágios iniciais do desenvolvimento larvar é utilizado alimento vivo, como Artémia. Nos últimos anos tem-se tentado obter dietas inertes devido às limitações inerentes à utilização de alimento vivo. Estas dietas apresentam na sua constituição uma componente muito hidrossolúvel que facilmente se perde por lixiviação, constituída por compostos de baixa massa molecular, mas que são determinantes para o crescimento das larvas. O objetivo deste trabalho foi utilizar inicialmente os lipossomas e posteriormente as micropartículas de quitosano (CS) como veículos para tentar formular microdietas para a alimentação de larvas de peixe. Para tal, foram encapsulados o hidrolisado de proteína de peixe (CPSP 90®) e um mistura de vitaminas, oligo-elementos e minerais (Pré-Mix PVO-40®). Os resultados obtidos indicam que os lipossomas apresentam tamanhos entre os 150-600 nm, dependendo do número de ciclos de congelação/aquecimento. Embora se tenham obtido eficiências de encapsulação de CPSP na ordem dos 90-95%, concluiu-se que esta tecnologia não é rentável para a produção de microdietas para larvas de peixe devido à reduzida capacidade de produção diária. Desta forma, desenvolveu-se um segundo sistema, as micropartículas de CS, que evidenciaram tamanhos de 2.7 - 8.7 μm, dependendo da percentagem de CS e CPSP:PM e uma eficiência de encapsulação de 95%. A formulação CS:CPSP:PM 2:6:0.5 apresentou a libertação mais baixa (40% em 30-60 min), permitindo que os restantes 60% estejam disponíveis para ingestão. Foi observado também que o perfil de libertação depende da quantidade de polímero presente nas micropartículas. A caracterização dos dois tipos de sistema estudados indica que não podem ser utilizadas como formulação final para a alimentação de larvas de peixe devido ao seu tamanho, mas que têm o perfil ideal para fazer parte de uma sistema complexo, em que exista uma segunda micropartícula externa.
Resumo:
Este trabalho descreve a biologia reprodutiva e dieta da chilreta Sternula albifrons no Sul de Portugal, entre 2008 e 2010. Foram analisadas as variáveis reprodutivas: tamanho médio das posturas, sucesso de eclosão e volume dos ovos entre os vários anos e habitats natural (Praias) e alternativo (Salinas). A dieta foi caracterizada a partir da identificação dos otólitos sagitais encontrados nos regurgitos recolhidos perto dos ninhos nas colónias das salinas. Foram identificados um máximo de 11 espécies ou géneros de peixe na dieta da chilreta. O peixe-rei (Atherina spp.) e os góbios (Pomatoschistus spp.) foram as espécies com maior frequência de ocorrência nos regurgitos (sempre superior a 75% e 25% respectivamente). Foram encontradas diferenças significativas somente na proporção da presa “itens não identificados” o que se deve às limitações do próprio método. Os resultados obtidos para as várias variáveis reprodutivas foram comparados com outros estudos anteriores das mesmas colónias por forma a avaliar a adequabilidade das salinas como habitats alternativos de nidificação. Não foram encontradas diferenças significativas nas variáveis reprodutivas entre os habitats natural e alternativo o que suporta a ideia de que as salinas são um habitat alternativo adequado para a nidificação da chilreta no Sul de Portugal. São discutidas algumas acções de conservação para as colónias em questão.
Resumo:
The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.
Resumo:
In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9 0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3 2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.
Resumo:
The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.
Resumo:
Gilthead seabream is the most important farmed species in the Mediterranean, and knowledge on how common farming practices impact its quality is limited. As such, this Thesis aimed to evaluate how gilthead seabream flesh quality is affected by some of these practices. In Chapter 2, the influence of nutritional factors was evaluated, specifically the high replacement of traditional marine-derived ingredients, both fishmeal and fish oil, with vegetable sources. We have seen that the vegetable-based diets tested did not greatly impact seabream flesh quality, although some alterations were seen in the fatty acid profile of the muscle. However, and despite having caused no alterations in flesh texture, vegetable ingredients reduced the amount of sulphated glycosaminoglycans in the extracellular matrix, affected muscle pH and reduced the activity of proteolytic enzymes. Throughout this Thesis, we measured for the first time the activity of proteolytic enzymes in seabream muscle, and cathepsin B was found to play a pivotal role in post-mortem muscle degradation. In Chapter 3, we evaluated the effect of harvesting and slaughter stress on seabream quality, and contrary to what is seen in most farmed species, our results show that gilthead seabream muscle structure is highly resistant to changes caused by stressful events. Nonetheless, considering that welfare is an increasingly important quality criterion, the use of a zero-withdrawal anaesthetic as a rested harvest technique or even slaughter method could prove valuable to the industry. In Chapter 4, we used maslinic acid as a dietary supplement, to modulate the muscle’s energetic status pre-mortem. As a finishing strategy, maslinic acid failed to increase levels of glycogen and ATP in the muscle. However, supplementation resulted in higher muscle fibre diameter and lower cathepsin B activity, and maslinic acid is likely to be useful to promote growth in this species. In general our Thesis has generated new knowledge to a major challenge facing the aquaculture industry, which is to find a compromise between the trends towards intensive rearing and consumer demand for healthy, high quality seafood being ethically acceptable and having a low impact on the environment.
Resumo:
The European sea bass, Dicentrarchus labrax, is one of the most important marine species cultivated in Southern Europe and has not benefited from selective breeding. One of the major goals in the sea bass (D. labrax) aquaculture industry is to understand and control the complexity of growth associated traits. The aim of the methodology developed for the studies reported in the thesis was not only to establish genetic and genomic resources for sea bass, but to also develop a conceptual strategy to efficiently create knowledge in a research environment that can easily be transferred to the aquaculture industry. The strategy involved; i) establishing an annotated sea bass transcriptome and then using it to, ii) identify new genetic markers for target QTL regions so that, iii) new QTL analysis could be performed and marker based resolution of the DNA regions of interest increased, and then iv) to merge the linkage map and the physical map in order to map the QTL confidence intervals to the sea bass genome and identify genes underlying the targeted traits. Finally to test if genes in the QTL regions that are candidates for divergent growth phenotypes have modified patterns of transcription that reflects the modified whole organism physiology SuperSAGE-SOLiD4 gene expression was used with sea bass with high growth heterogeneity. The SuperSAGE contributed to significantly increase the transcriptome information for sea bass muscle, brain and liver and also led to the identification of putative candidate genes lying in the genomic region of growth related QTL. Lastly all differentially expressed transcripts in brain, liver and muscle of the European sea bass with divergent specific growth rates were mapped to gene pathways and networks and the regulatory pathways most affected identified and established the tissue specific changes underlying the divergent SGR. Owing to the importance of European sea bass to Mediterranean aquaculture and the developed genomics resources from the present thesis and from other studies it should be possible to implement genetic selection programs using marker assisted selection.