344 resultados para patamar isotérmico
Resumo:
The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders
Resumo:
With the disorganized decentralization occurred in Brazil after the 1988 Constitution, municipalities have risen to the level of federal entities. This phenomenon became known as "municipalism" also brought some negative effects such as low capacity financial, economic and political of these entities. In the face of this reality , the municipalities sought in models of collaborative features to address public policy issues ultrarregionais, one of these models are the Public Consortia. Characterized as the organization of all federal entities that aim to solve public policy implementation alone that they could not, or spend great resources for such. This reality of the municipalities have an aggravating factor when looking at the situation in Metropolitan Regions (MRs). This is because the RMs has a historical process of formation that does not encourage cooperation, since that were created top-down during the military regime. Furthermore, the metropolitan municipalities have significant power asymmetries, localist vision, rigidity earmarked revenues, different scenarios conurbation, difficulty standardization of concepts and others that contribute to the vision of low cooperation of these metropolitan areas. Thus, the problem of this work is in the presence of collaborative arrangements, such as the Public Consortia in metropolitan areas, which are seen as areas of low cooperation. To elucidate this research was used for analysis the cases of CONDIAM/PB and Consórcio Grande Recife/PE, because they are apparently antagonistic, but with some points of similarity. The cases has as foundation the Theory of Common Resources, which provides the possibility of collective action through the initiative of individuals. This theory has as its methodology for analyzing the picture IAD Framework, which proposes its analysis based on three axes: external variables, the arena of action and results. The nature of the method of this research was classified as exploratory and descriptive. For the stage of date analysis, was used the method of document analysis and content, Further than of separation of the cases according to theur especificities. At the end of the study, noted that the CONDIAM/PB was a strategy of municipal government of Joao Pessoa to attract funds from the Federal Government for the purpose of to build a landfill, and over the years the ideology of cooperation was left aside, the prevailing view localist municipalities. In the case of Consórcio Grande Recife/PE, members act with some degree of cooperation, especially the collaborative aspect of the region, however, still prevails with greater strength the power of the state of Pernambuco in the decisions and paths of the consortium. Thus, was conclude that the Public Consortia analyzed are an experience of collaborative arrangement, from the initiative of members, as the theory of common resources says, but has not actually signed as a practice of collective action to overcome the dilemmas faced by metropolitan areas
Resumo:
Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values
Resumo:
Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing
Resumo:
This dissertation presents a hybrid ceramic block the use of which reside in the buildings executed with walls. Initially, we conducted a survey on the requirements and / or norms prevailing in Brazil about structural ceramic blocks, making use of the experiences in other countries. This work seeks new materials and / or products in order to maintain or increase the compressive strength of the ceramic blocks, without neglecting the other properties. Then was collected materials (clay and crushed powder) and an approach on the characterization, through fluorescence, Mineralogy, vitrification curve and characterization of these materials used in the manufacture of the blocks by Ray Diffraction "X" and SEM. Subsequently it was made, numbered and measured dimensions of about 150 bodies of the test piece (hybrid ceramic blocks in small sizes) with varying percentages of 0%, 5%, 10% and 15% substitution of crushed clay powder. After sintering of the bodies of the test piece at temperatures of 900oC, 1000oC 1100oC and with a heating rate of 5oC/minuto and level of 1 hour, the samples were submitted to the tests (compressive strength and water absorption) and calculated their retractions, which were subsequently carried out the analysis of the results according to the criteria and parameters required by Brazilian legislation and standards in force
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases
Resumo:
A presente comunicação apresenta uma investigação que se tem vindo a desenvolver junto de alunos dos cursos de licenciatura da Universidade de Évora e que tem como objetivo verificar como se repercute no desenvolvimento vocacional destes indivíduos a sua entrada na Universidade. A par das opções vocacionais descrevem-se os processos de tomada de decisão, os meios informativos a que os alunos recorrem e as suas perceções quanto à necessidade de orientação escolar e profissional, por exemplo. A entrada na universidade parece ter correspondido a mais um patamar que se ultrapassou na consecução dos objetivos que fazem parte do próprio projeto de vida dos alunos.
Resumo:
Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy
Resumo:
The red pottery industry in Piauí state is well developed and stands out at the national context for the technical quality of its products. The floor and wall tile industry, however, is little developed since the state has only one company that produces red clay-based ceramic tiles. This thesis aims at using the predominantly illitic basic mass of the above mentioned industry, with the addition of feldspar and/or kaolin residue in order to obtain products of higher technical quality. Kaolin residue consists basically of kaolinite, muscovite mica and quartz; the feldspar used was potassic. In this experiment, basic mass (MB) was used for experimental control and fifteen formulations codified as follows: F2, F4, F8, F16, F32, FR2, FR4, FR8, FR16, FR32, R2, R4, R8, R16 and R32. All raw materials were dry-milled, classified, formulated and then humidified to 10% water. Thereafter, test samples were produced by unixial pressing process in a rectangular steel matrix (60.0 x 20.0 x 5.0) mm3 at (25 MPa). They were fired at four temperatures: 1080°C, 1120°C, 1160°C, with a heating rate of 10°C/min during up to 10 min in an electric oven, and the last one in an industrial oven with a peak of 1140°C, aim ing to confirm the results found in laboratory and, finally, technological tests were performed: MEA, RL, AA, PA, TRF and PF. The results revealed that the residue under study can be considered a raw material with large potential in the industry of red clay-based ceramic tiles, since the results found both in laboratory and in the industry have shown that the test samples produced from the formulations with up to 4% feldspar and those produced with up to 8% feldspar and residue permitted a reduction in the water absorption rate and an increase in the mechanical resistance while those samples produced with up to 4% residue had an increase in the mechanical resistance when compared to those produced from the basic mass and that the formulation with 2% feldspar and residue presented the best technological properties, lowering the sintering temperature down to 1120°C
Resumo:
Over recent years the structural ceramics industry in Brazil has found a very favorable market for growth. However, difficulties related to productivity and product quality are partially inhibiting this possible growth. An alternative for trying to solve these problems and, thus, provide the pottery industry the feasibility of full development, is the substitution of firewood used in the burning process by natural gas. In order to contribute to this process of technological innovation, this paper studies the effect of co-use of ceramic phyllite and kaolin waste on the properties of a clay matrix, verifying the possible benefits that these raw materials can give to the final product, as well as the possibility of such materials to reduce the heat load necessary to obtain products with equal or superior quality. The study was divided into two steps: characterization of materials and study of formulations. Two clays, a phyllite and a residue of kaolin were characterized by the following techniques: laser granulometry, plasticity index by Atterberg limits, X-ray fluorescence, X-ray diffraction, mineralogical composition by Rietveld, thermogravimetric and differential thermal analysis. To study the formulations, specifically for evaluation of technological properties of the parts, was performed an experimental model that combined planning involving a mixture of three components (standard mass x phyllite x kaolin waste) and a 23 factorial design with central point associated with thermal processing parameters. The experiment was performed with restricted strip-plot randomization. In total, 13 compositional points were investigated within the following constraints: phyllite ≤ 20% by weight, kaolin waste ≤ 40% by weight, and standard mass ≥ 60% by weight. The thermal parameters were used at the following levels: 750 and 950 °C to the firing temperature, 5 and 15 °C/min at the heating rate, 15 and 45min to the baseline. The results showed that the introduction of phyllite and/or kaolin waste in ceramic body produced a number of benefits in properties of the final product, such as: decreased absorption of water, apparent porosity and linear retraction at burn; besides the increase in apparent specific mass and mechanical properties of parts. The best results were obtained in the compositional points where the sum of the levels of kaolin waste and phyllite was maximal (40% by weight), as well as conditions which were used in firing temperatures of 950 °C. Regarding the prospect of savings in heat energy required to form the desired microstructure, the phyllite and the residue of kaolin, for having small particle sizes and constitutions mineralogical phases with the presence of fluxes, contributed to the optimization of the firing cycle.
Resumo:
Mestrado em Ciências Empresariais
Resumo:
To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles
Resumo:
Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites
Resumo:
Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations