929 resultados para numerical solution
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
Recently, Donley et al. performed an experiment on the dynamics of collapsing and exploding Bose-Einstein condensates by suddenly changing the scattering length of atomic interaction to a large negative value on a preformed repulsive condensate of Rb-85 atoms in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosions, We show that the accurate numerical solution of the time-dependent Gross-Pitaevskii equation with axial symmetry can explain some aspects of the dynamics of the collapsing condensate. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
We use a time-dependent dynamical hydrodynamic model to study a collapse in a degenerate fermion-fermion mixture ( DFFM) of different atoms. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances, there cannot be a collapse for repulsive interspecies fermion fermion interaction. However, there can be a collapse for a sufficiently attractive interspecies fermion-fermion interaction in a DFFM of different atoms. Using a variational analysis and numerical solution of the hydrodynamic model, we study different aspects of collapse in such a DFFM initiated by a jump in the interspecies fermion-fermion interaction ( scattering length) to a large negative ( attractive) value using a Feshbach resonance. Suggestion for experiments of collapse in a DFFM of distinct atoms is made.
Resumo:
We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Muller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38).
Resumo:
Using the numerical solution of the nonlinear Schrodinger equation and a variational method, it is shown that (3+1)-dimensional spatiotemporal optical solitons, known as light bullets, can be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
We study the Bose-Einstein condensation of an interacting gas with attractive interaction confined in a harmonic trap using a semiclassical two-fluid mean-field model. The condensed state is described by the converged numerical solution of the Gross-Pitaevskii equation. By solving the system of coupled equations of this model iteratively we obtain the converged results for the temperature dependencies of the condensate fraction, chemical potential, and internal energy for the Bose-Einstein condensate of Li-7 atoms. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
We predict a dynamical: classical superfluid-insulator transition in a Bose-Einstein condensate (BEC) trapped in combined optical and axially symmetrical harmonic potentials initiated by the periodic modulation of the radial trapping potential. The transition is marked by a loss of phase coherence in the BEC and a subsequent destruction of the interference pattern upon free:expansion. For a weak modulation of the radial potential the phase coherence is maintained. For a stronger modulation and a longer holding time in the modulated trap, the phase coherence is destroyed thus signalling a classical superfluid-insulator transition. The results are illustrated by a complete numerical solution of the axially symmetrical mean-field Gross-Pitaevskii equation for a repulsive BEC. Suggestions for future experimentation are-made.
Resumo:
Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.